为了账号安全,请及时绑定邮箱和手机立即绑定

六大数据统计图——Python的数据可视化

标签:
Python

一直以来,数据可视化就是一个处于不断演变之中的概念,其边界在不断地扩大;因而,最好是对其加以宽泛的定义。数据可视化指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。

1.环境

系统:windows10

python版本:python3.6.1

使用的库:matplotlib,numpy

2.numpy库产生随机数几种方法

webp

3.散点图

>x x轴
> y y轴
> s   圆点面积
> c   颜色
> marker  圆点形状
> alpha   圆点透明度                #其他图也类似这种配置</pre>>
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()

webp

4.折线图

x=np.linspace(-10000,10000,100) #将-10到10等区间分成100份y=x**2+x**3+x**7
plt.plot(x,y)
plt.show()

折线图使用plot函数

webp

5.条形图

N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)
plt.bar(left=index,height=y,color='red',width=0.3)
plt.bar(left=index+0.3,height=y1,color='black',width=0.3)
plt.show()

webp

orientation设置横向条形图

N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)# plt.bar(left=index,height=y,color='red',width=0.3)# plt.bar(left=index+0.3,height=y1,color='black',width=0.3)#plt.barh() 加了h就是横向的条形图,不用设置orientationplt.bar(left=0,bottom=index,width=y,color='red',height=0.5,orientation='horizontal')
plt.show()

webp

6.直方图

m1=100sigma=20x=m1+sigma*np.random.randn(2000)
plt.hist(x,bins=50,color="green",normed=True)
plt.show()

webp

> # #双变量的直方图         如果对Python编程、网络爬虫、机器学习、数据挖掘、web开发、人工智能、面试经验交流。感兴趣可以519970686,群内会有不定期的发放免费的资料链接,这些资料都是从各个技术网站搜集、整理出来的,如果你有好的学习资料可以私聊发我,我会注明出处之后分享给大家。欢迎分享,欢迎评论,欢迎转发> # #颜色越深频率越高> # #研究双变量的联合分布</pre>
#双变量的直方图#颜色越深频率越高#研究双变量的联合分布x=np.random.rand(1000)+2
y=np.random.rand(1000)+3
plt.hist2d(x,y,bins=40)
plt.show()

webp

7.饼状图

> #设置x,y轴比例为1:1,从而达到一个正的圆</pre>
>#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影</pre>
labes=['A','B','C','D']
fracs=[15,30,45,10]
explode=[0,0.1,0.05,0]#设置x,y轴比例为1:1,从而达到一个正的圆plt.axes(aspect=1)#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影plt.pie(x=fracs,labels=labes,autopct="%.0f%%",explode=explode,shadow=True)
plt.show()

webp

8.箱型图

import matplotlib.pyplot as pltimport numpy as np
data=np.random.normal(loc=0,scale=1,size=1000)#sym 点的形状,whis虚线的长度plt.boxplot(data,sym="o",whis=1.5)
plt.show()
>#sym 点的形状,whis虚线的长度</pre>


webp



作者:软件测试安Q
链接:https://www.jianshu.com/p/6ccc372ee196


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消