摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题。原始数据存在大量不完整、不一致、有异常的数据,严重影响到数据建模的执行效率,甚至可能导致模型结果的偏差,因此要数据预处。数据预处理主要是将原始数据经过文本抽取、数据清理、数据集成、数据处理、数据变换、数据降维等处理后,不仅提高了数据质量,而且更好的提升算法模型性能。数据预处理在数据挖掘、自然语言处理、机器学习、深度学习算法中起着重要的作用。(本文原创,转载必须注明出处.)
1 什么是数据预处理
数据预处理简而言之就是将原始数据
装进一个预处理的黑匣子
之后,产生出高质量数据
用来适应相关技术或者算法模型。为了大家更明确的了解数据预处理,我们举个新闻分类的例子:
将原始的数据直接进行分类模型训练,分类器准确率和召回率都比较低。因为我们原始数据存在很多干扰项,比如
的
,是
等这些所谓停用词特征对分类起的作用不大,很难达到工程应用。我们将原始数据放假预处理黑匣子后,会自动过滤掉干扰数据,并且还会按照规约的方法体现每个词特征的重要性,然后将词特征压缩变换在数值型矩阵中,再通过分类器就会取得不错的效果,可以进行工程应用。
总结:数据预处理前的数据存在不完整、偏态、噪声、特征比重、特征维度、缺失值、错误值等问题;数据预处理后的数据存在完整、正态、干净、特征比重合适、特征维度合理、无缺失值等优点。
数据预处理方法:
数据清理:通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来清理数据。主要目标:格式标准化,异常数据清除,错误纠正,重复数据的清除。
数据集成:将数据由多个数据源合并成一个一致的数据存储,如数据仓库。
数据变换:通过平滑聚集,数据概化,规范化等方式将数据转换成适用于的形式。如把数据压缩到0.0-1.0区间。
数据归约:往往数据量非常大,在少量数据上进行挖掘分析需要很长的时间,数据归约技术可以用来得到数据集的归约表示,它小得多,但仍然接近于保持原数据的完整性,并结果与归约前结果相同或几乎相同。可以通过如聚集、删除冗余特征或聚类来降低数据的规模。
2 为什么做这门课程
在初期学习阶段,大家精力着重于算法模型和调参上。实际情况是,有时候在算法改进上花费很多功夫,却不如在数据质量上的些许提高来的明显。另外,习惯于数据语料的拿来主义之后,当面对新的任务时候,却不知道如何下手?有的同学在处理英语时候游刃有余,面对中文数据预处理却不知所措。基于以上几个问题,结合作者工程经验,整理出了‘数据预处理’学习资料,本教程主要面对文本信息处理,在图片语音等数据语料处理上是有所区别的。
3 本课程能学到什么
文本批量抽取:涉及技术点包括pywin32插件安装使用、文档文本提取、PDF文本提取、文本抽取器的封装、方法参数的使用、遍历文件夹、编码问题、批量抽取文本信息。
数据清洗:包括yield生成器、高效读取文件、正则表达式的使用、清洗网页数据、清洗字符串、中文的繁简互相转换、缺失值的处理、噪声数据、异常数据清洗、批量清洗30万条新闻数据。
数据处理:包括结巴分词精讲、HanLP精讲、停用词的处理、NLTK的安装使用、高频词和低频词的处理、词性的选择、特征数据的提取、批量预处理30万条新闻数据。
数据向量化:包括词袋模型、词集模型、词向量的转化、缺失值和数据均衡、语料库技术、TFIDF、特征词比重、主成分分析、主题模型等、批量进行30万条数据向量化。
可视化技术:包括条形图、柱形图、散点图、饼图、热力图等,还有matplotlib、seabom、Axes3D综合使用进行三维可视化。
XGBoost竞赛神器:包括监督学习、文本分类、XGBoost原理、XGBoost算法实现、XGBoost调参、算法性能评估、30万条文档生成词典、30万条文档转化TFIDF、30万条文档转化生成LSI、训练分类器模型、抽样改进模型算法、特征维度改进模型算法、XGBoost实现30万条新闻数据文本分类
综上所述:数据预处理整体包括数据抽取-->数据清洗-->数据处理-->数据向量化-->可视化分析-->模型构建。在整个过程中,我们每个章节相关性很强,首先对整个章节最终实现效果进行演示,然后拆分知识点分别讲解,最后将所有知识点整合起来做小节的实战。每个小节实战数据为下一个章节做铺垫,最后,一个综合实战分类案例串联所有知识点。
4 开发环境说明
开发语言: Python3.5.3
系统环境:window10操作系统
编程环境:Sublime
软件环境:Anaconda4.4.0
插件版本:均支持最新版本
sublime激活:打开Help >Enter LICENSE
----- BEGIN LICENSE ----- sgbteam Single User License EA7E-1153259 8891CBB9 F1513E4F 1A3405C1 A865D53F 115F202E 7B91AB2D 0D2A40ED 352B269B 76E84F0B CD69BFC7 59F2DFEF E267328F 215652A3 E88F9D8F 4C38E3BA 5B2DAAE4 969624E7 DC9CD4D5 717FB40C 1B9738CF 20B3C4F1 E917B5B3 87C38D9C ACCE7DD8 5F7EF854 86B9743C FADC04AA FB0DA5C0 F913BE58 42FEA319 F954EFDD AE881E0B ------ END LICENSE ------ |
解决Package Control报错:Package Control.sublime-settings]修改方法:Preferences > Package Settings > Package Control > Settings - User 添加:
"channels" : [ "http://cst.stu.126.net/u/json/cms/channel_v3.json" , //"https://packagecontrol.io/channel_v3.json", //"https://web.archive.org/web/20160103232808/https://packagecontrol.io/channel_v3.json", //"https://gist.githubusercontent.com/nick1m/660ed046a096dae0b0ab/raw/e6e9e23a0bb48b44537f61025fbc359f8d586eb4/channel_v3.json" ] |
5 项目演示
5.1 原始数据
5.2 数据预览
5.3 数据清洗
5.4 生成词典
5.5 生成特征向量
5.6 生成LSI
5.7 XGBoost新闻数据文本分类
共同学习,写下你的评论
评论加载中...
作者其他优质文章