为了账号安全,请及时绑定邮箱和手机立即绑定

TCP入门与实例讲解

标签:
CSS3

内容简介

TCP是TCP/IP协议栈的核心组成之一,对开发者来说,学习、掌握TCP非常重要。

本文主要内容包括:什么是TCP,为什么要学习TCP,TCP协议格式,通过实例讲解TCP的生命周期(建立连接、传输数据、断开连接)

TCP简介

传输层控制协议(Transport Control Protocol),TCP/IP协议栈的核心之一。位于应用层与网络层之间,提供面向连接的、可靠的字节流服务。

记住关键词“面向连接”、“可靠”、“字节流”,这是学习掌握TCP的关键:

  • 面向连接:客户端、服务端交换数据前,需要建立连接;

  • 可靠:通过特定机制,在不可靠的网络之上,确保报文准确送达,

  • 字节流:数据的最小单位为字节。至于字节中存储内容的含义,由于应用层的程序决定。


TCP如何确保服务可靠性

TCP花了大量的功夫在确保传输层服务的可靠性上,具体举措包括(但不限于)以下:

  • 应用数据切割:应用数据被分隔成TCP认为最适合发送的多个报文段(由特定的算法和机制来确认)

  • 接收端确认:接收端收到报文段后,会向发送端发送确认报文;

  • 超时重传机制:发送端发送一个报文段后,会启动定时器,等待接收端确认收到这个报文;如果没有及时收到确认,发送端会重新发送报文;

  • 数据校验和:发送端发送的报文首部中,有个叫做校验和(checksum)的特殊字段,它是根据报文的首部、数据计算出来的。这是一个端到端的校验和,用来检测传输过程数据的变化。接收端收到报文后会对校验和进行检查,如果校验和存在差错,则丢弃这个报文,且不确认收到此报文(等待发送端超时重发)

  • 报文段排序:TCP报文包裹在IP数据包里进行传输,而IP数据包的到达次序是不固定的。接收端会对接收到的报文段重新排序,这个对应用层是无感知的;

  • 去重复:接收端丢弃重复的报文(比如,因某些原因,虽然接收端已经收到报文,且给发送端发送了接收确认,但接收端没有收到该确认,超时后重新发送了同样的报文);

  • 流量控制:TCP连接双方都有固定大小的缓冲空间,且只允许发送端发送缓冲空间能够容纳的数据,避免缓冲区溢出;

TCP传输服务的可靠性对应用层的开发者来说至关重要。作为应用层的开发者(比如HTTP server),除了业务逻辑之外,如果还需要操心数据是否正常送达,接收到的数据是否完整,开发效率会相当低下。

参考自《TCP/IP详解卷一》,推荐阅读

TCP首部格式

TCP首部格式如下图所示,在不包含可选字段的情况下,大小通常为20个字节。部分字段定义可能并不直观,如果读者觉得某些首部字段不好理解,建议先跳过,结合后文的实例可能更容易理解些。

比如 Sequence Number/Acknowledgment Number/ACK/SYN,结合TCP建立连接的过程来看,会更好理解。

这里留个小问题给读者:怎么知道TCP报文段数据(data)的长度是多少?


Source Port(来源端口):16位

Destination Port(目的端口):16位

Sequence Number(序号):32位

TCP报文段中的数据部分,每一个字节都有它的序号(递增)。根据控制标志(Control Bits)中的SYN是否为1,Sequence Number 表达不同的含义:

  • SYN = 1:当前为连接建立阶段,此时的序号为初始序号(ISN)。当数据传输正式开始时,数据的第一个字节的序号为 ISN + 1;

  • SYN = 0:当前报文段中,数据部分的第一个字节的序号。

Acknowledgment Number(确认序号):32位

当控制标志的ACK为1时,表示发送方希望收到的下一个报文段的序号(Sequence Number)。一旦连接建立成功,ACK值一直为1。

Data Offset(数据偏移量):4位

TCP报文段的首部长度,单位是word(4字节)。字面含义是:TCP报文段的数据的起始处,距离TCP报文段的起始处 的偏移量。4个字节最大能表示的数字是15,所以首部最大60字节。

Reserved(保留字段):6位

预留作为后续用途,必须是0。

Control Bits(控制标志):6位

一共有6个控制标志,其中SYN/ACK、FIN/ACK主要用于连接的建立、断开阶段。

  • URG: 当置为1时,表示紧急指针(Urgent Pointer)字段有效;

  • ACK: 确认序号字段(Acknowledgment Number)有效;

  • PSH: 接收方应立即把这个报文段交给应用层;

  • RST: 重建连接;

  • SYN: 同步序号,用于建立连接;

  • FIN: 发送端不再发送数据;

Window Size(窗口大小):16位

允许对方发送的数据量。告诉对方自己缓冲区还能容纳多少字节,用来控制对方发送数据的速度。

比如,服务端发送给客户端的TCP报文段中,确认序号是701,窗口字段(Window Size)是1000,表明服务端能够接受客户端发来的,序号从701开始的1000字节数据。

Checksum(校验和):16位

发送端对TCP首部、数据进行CRC运算得出的结果。接收端收到数据后,对接收到的TCP报文段的首部、数据进行CRC运算,并跟TCP首部中的校验和进行对比,确保数据在传输过程中没有损坏。

计算、校验规则这里先不展开。

Urgent Pointer(紧急指针):16位

仅在URG=1时才生效,它的值是一个偏移量,和序号字段中的值相加得到紧急数据最后一个字节的序号。

options(可选字段):大小不固定

最常见的可选字段是MSS(Maximum Segment Size),表示最长报文大小,通信双方通常在连接的第一个报文段中指明这个选项。(只能出现在SYN报文中)

建立连接 vs 断开连接

TCP的两段正式开始传输数据前,需要先建立连接。一旦数据传输完成,则需要断开连接。

后面章节中,会通过实际例子说明TCP数据传输的完整生命流程。在这之前,先简单介绍下TCP是如何建立连接以及断开连接的,也就是我们所熟悉的3次握手以及4次挥手。

这里留几个问题给读者朋友:

  1. 建立连接的主要目的是什么?做了哪些事情?

  2. 建立连接为什么是3次握手,可不可以是2次?

  3. 断开连接一定要4次挥手吗?

Seq => Sequence Number,Ack => Acknowledgment Number,[SYN] => 控制标志SYN,[ACK] => 控制标志ACK

建立连接

一般情况下,握手流程如 下图 所示,主要做了两件事情:

  1. 互相确认对方当前可以建立连接

  2. 互相交换确认初始序列号(ISN)


断开连接

一般情况下,TCP断开连接需要4次挥手。假设 TCP A 主动断开连接,流程如下。主要就是告知对方,自己准备断开连接了,并且等待对方的确认。


从实例看TCP生命周期

在这一小节,会通过例子,阐述TCP从建立连接,到数据传输,到最后断开连接的整个过程,并通过wireshark抓包探究一些通信的细节。

首先,打开wireshark监听网络请求。然后,在终端输入如下命令发送HTTP请求。

curl http://id.qq.com/index.html

下面为wireshark抓包截图,分为3个部分,分别为 (1)建立连接,(2)数据传输,(3)断开连接。


建立连接

1、本地 -> 服务端:[SYN] Seq=0;


备注:本例子中中,客户端、服务端的初始Seq值其实不是0,截图中展示的0是个相对值,是wireshark为了方便开发者进行抓包分析转化过来的。

2、服务端 -> 本地:[SYN, ACK] Seq=0, Ack=1;


3、本地 -> 服务端:[ACK] Seq=1, Ack=1


到这里,双方连接建立,开始交换数据

数据传输

数据交换是双向的,这里以服务端的HTTP响应为例子。响应内容较大,被拆成了多个TCP包。整个数据发送的过程,就是服务端向客户端发送数据,客户端向服务端发送确认的过程。

1.1、服务端->客户端:Seq=1,TCP数据长度273。也就是说,服务端发送的报文段中,第一个数据字节的序号是1;下一个TCP报文段,第一个数据字节的序号应该是274。


1.2、客户端->服务端:Ack=274。表示客户端已经收到序号274之前的所有字节;也就是说,服务端如果继续给客户端发送TCP报文,应该发送序号274及以后的数据。


2.1、服务端->客户端:Seq=274,TCP数据长度1400。也就是说,服务端发送的报文段中,第一个数据字节的序号是274;下一个TCP报文段,第一个数据字节的序号应该是1674(274 + 1400)。

5acb3c8700013dc501600160.jpg

2.2、。。。

后面的分析过程同上。

断开连接

从抓包中看到比较有意思的点。当服务端收到客户端的断开请求时(FIN=1),服务端在同一个响应包里发送了FIN、ACK,达到了减少一个数据包的效果。

5acb3c8700013dc501600160.jpg

为什么要学习TCP

笔者在前端招聘的面试中,经常会问一些网络基础方面的问题,经常会有面试者感到困惑:为什么要问这些问题?这些知识是他们需要掌握的吗?好像跟工作关联不大?

这可能是普遍的误区。

掌握HTTP协议的重要性不用强调,WEB开发者的基础要求之一。但是,有必要学习TCP吗?这个问题倒是值得思考一下。

答案是:很有必要。

举个例子:

WebSocket是基于TCP的,并复用了HTTP的握手通道。如果开发者对HTTP、TCP没有一定的了解,那么在使用WebSocket的时候,WebSocket对他来说就像一个黑盒,充满了各种黑科技。WebSocket、HTTP两者有什么关联?WebSocket跟Socket.io有什么关联?为什么服务端开启多个Socket.io实例,并通过反向代理进行转发后,连接握手就会失败?

如果开发者对HTTP、TCP足够了解,在遇到上面的问题时,就不至于毫无头绪。

再举个例子:

在探究性能优化时,经常会提到HTTP/2。什么是HTTP/2,为什么说HTTP/2的性能比HTTP 1.1好?什么是HTTP/2的多路复用?是怎么实现的?有什么好处?

同样的,如果对HTTP、TCP足够了解,上面的问题并不难回答,翻翻书或协议,至少能够回答个大概。

写在后面

TCP/IP由复杂的协议栈组成,而TCP是协议栈中的核心部分。TCP协议本身非常复杂,本文只是对基础部分进行了讲解,还有许多内容尚未覆盖到,比如TCP的超时重传机制、拥塞控制机制等,后面有时间再继续展开。

如有错漏,敬请指出。

相关链接

《TCP/IP详解卷一》

Difference between push and urgent flags in TCP

Calculate size and start of TCP packet data (excluding header)

Why do we need a 3-way handshake? Why not just 2-way?

原文地址:https://www.chyingp.com/posts/understanding-tcp/


点击查看更多内容
1人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消