本文转自个人微信公众号
Flink 里时间包括Event Time、Processing Time 和 Ingestion Time 三种类型。
Processing Time:Processing Time 是算子处理某个数据时到系统时间。Processing Time 是最简单的时间,提供了最好的性能和最低的延迟,但是,在分布式环境中,Processing Time具有不确定性,多次运行的结果可能出现不一致。
Ingestion Time:Ingestion Time 是数据进入Flink 集群的时间,Source Operator 给数据加上时间戳。
Event Time:Event Time是数据在设备上产生时的时间,一般都嵌入到了数据记录中,相比于其他两种,Event Time 更具有业务意义, 取决于数据而不是系统。举例来说,重跑历史数据时,如果根据Processing Time 重跑,可能会造成结果不一致,而根据Event Time 重跑,结果是一致的。
由于Event Time 更能表达业务需求,所以,Event Time 应用更为广泛,但使用Event Time 也会存在一些问题。
1. 问题:乱序与延迟
乱序与延迟是实时系统中最常见的问题。比如说,在实时系统中广泛使用的消息队列,很难保证端到端的全局有序,从而导致进入 Flink 集群的数据是无序的;然后,由于洪峰的存在,比如秒杀或者重跑历史数据,很容易造成数据在消息队列堆积,从而造成延迟。
2. 解决方案
采用Event Time的流计算处理器,需要评估Event Time进展,比如当窗口结束时,需要通知 Operator 关闭窗口并开始计算。
2.1 Watermark
Apache Flink 采用watermark来处理,watermark 带有一个时间戳,作为数据流的一部分随数据流流动,Watermark(t)
表示event time 小于等于 t
的都已经到达,如下图所示。
flink-watermark.png
2.1.1 生成Watermark
2.1.1.1 方法1 Source 中生成
在source中,直接生成watermark,不过,source生成的watermark 优先级比较低,可以被方法2中的覆盖掉。具体的定义在一篇讲Source & Sink 时详述。
2.1.1.2 方法2 Timestamp Assigner
Timestamp Assigner 输入数据流,产生一个新的数据流,新数据流带有产生的watermark,如果原数据流本身就有watermark,则覆盖原watermark。Timestamp Assigner 一般紧跟在source后,但不是必须的,但是必须在第一个event time 操作前。
Timestamp Assigner 分两种:
Periodic: 周期性(一定时间间隔或一定数据量)产生watermark。
Punctuated: 间断的 watermark,一般根据event 决定是否产生新watermark。
Periodic
直接看源码(注释太明白,不舍得删)。
/** * A {@code TimestampAssigner} assigns event time timestamps to elements. * These timestamps are used by all functions that operate on event time, * for example event time windows. * * <p>Timestamps are represented in milliseconds since the Epoch * (midnight, January 1, 1970 UTC). * * @param <T> The type of the elements to which this assigner assigns timestamps. */public interface TimestampAssigner<T> extends Function { /** * Assigns a timestamp to an element, in milliseconds since the Epoch. * * <p>The method is passed the previously assigned timestamp of the element. * That previous timestamp may have been assigned from a previous assigner, * by ingestion time. If the element did not carry a timestamp before, this value is * {@code Long.MIN_VALUE}. * * @param element The element that the timestamp will be assigned to. * @param previousElementTimestamp The previous internal timestamp of the element, * or a negative value, if no timestamp has been assigned yet. * @return The new timestamp. */ long extractTimestamp(T element, long previousElementTimestamp); }
/** * The {@code AssignerWithPeriodicWatermarks} assigns event time timestamps to elements, * and generates low watermarks that signal event time progress within the stream. * These timestamps and watermarks are used by functions and operators that operate * on event time, for example event time windows. * * <p>Use this class to generate watermarks in a periodical interval. * At most every {@code i} milliseconds (configured via * {@link ExecutionConfig#getAutoWatermarkInterval()}), the system will call the * {@link #getCurrentWatermark()} method to probe for the next watermark value. * The system will generate a new watermark, if the probed value is non-null * and has a timestamp larger than that of the previous watermark (to preserve * the contract of ascending watermarks). * * <p>The system may call the {@link #getCurrentWatermark()} method less often than every * {@code i} milliseconds, if no new elements arrived since the last call to the * method. * * <p>Timestamps and watermarks are defined as {@code longs} that represent the * milliseconds since the Epoch (midnight, January 1, 1970 UTC). * A watermark with a certain value {@code t} indicates that no elements with event * timestamps {@code x}, where {@code x} is lower or equal to {@code t}, will occur any more. * * @param <T> The type of the elements to which this assigner assigns timestamps. * * @see org.apache.flink.streaming.api.watermark.Watermark */public interface AssignerWithPeriodicWatermarks<T> extends TimestampAssigner<T> { /** * Returns the current watermark. This method is periodically called by the * system to retrieve the current watermark. The method may return {@code null} to * indicate that no new Watermark is available. * * <p>The returned watermark will be emitted only if it is non-null and its timestamp * is larger than that of the previously emitted watermark (to preserve the contract of * ascending watermarks). If the current watermark is still * identical to the previous one, no progress in event time has happened since * the previous call to this method. If a null value is returned, or the timestamp * of the returned watermark is smaller than that of the last emitted one, then no * new watermark will be generated. * * <p>The interval in which this method is called and Watermarks are generated * depends on {@link ExecutionConfig#getAutoWatermarkInterval()}. * * @see org.apache.flink.streaming.api.watermark.Watermark * @see ExecutionConfig#getAutoWatermarkInterval() * * @return {@code Null}, if no watermark should be emitted, or the next watermark to emit. */ @Nullable Watermark getCurrentWatermark(); }
可以看出,自定义的Assigner 需要实现AssignerWithPeriodicWatermarks
接口,其中getCurrentWatermark
产生新的watermark,如果返回非空且大于原来的watermark,则生成了新的watermark;另外,extractTimestamp
用于给数据加上时间戳,这个时间戳在后续所有基于event time的计算中使用。以下面的代码为例,假设数据可能乱序,但最多延迟3.5秒。
/** * This generator generates watermarks assuming that elements arrive out of order, * but only to a certain degree. The latest elements for a certain timestamp t will arrive * at most n milliseconds after the earliest elements for timestamp t. */class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks[MyEvent] { val maxOutOfOrderness = 3500L // 3.5 seconds var currentMaxTimestamp: Long = _ override def extractTimestamp(element: MyEvent, previousElementTimestamp: Long): Long = { element.getCreationTime() } override def getCurrentWatermark(): Watermark = { // return the watermark as current highest timestamp minus the out-of-orderness bound new Watermark(currentMaxTimestamp - maxOutOfOrderness) } }
ExecutionConfig.setAutoWatermarkInterval(...)
定义了watermark产生的时间间隔,单位是毫秒。
Punctuated
根据event来确定是否需要产生新的watermark,定义Punctuated Assigner 需要实现AssignerWithPunctuatedWatermarks
接口,包括函数extractTimestamp
,checkAndGetNextWatermark
,其中extractTimestamp
同Periodic Assigner,首先调用;然后调用checkAndGetNextWatermark
,用于确定是否需要产生新的watermark,当checkAndGetNextWatermark
产生一个非空且大于上一个watermark时就产生了新的watermark。举个例子如下:
class PunctuatedAssigner extends AssignerWithPunctuatedWatermarks[MyEvent] { override def extractTimestamp(element: MyEvent, previousElementTimestamp: Long): Long = { element.getCreationTime } override def checkAndGetNextWatermark(lastElement: MyEvent, extractedTimestamp: Long): Watermark = { if (lastElement.hasWatermarkMarker()) new Watermark(extractedTimestamp) else null } }
2.1.2 Flink 预定义Timestamp Assigner
为了便于使用,Apache Flink 提供了两种预定义的Timestamp Assigner:
AscendingTimestampExtractor: 这是
AssignerWithPeriodicWatermarks
的最简单的情况,数据流是按时间戳升序到达Flink的,这种情况下,数据里的时间戳就可以作为watermarkval withTimestampsAndWatermarks = stream.assignAscendingTimestamps( _.getCreationTime )
BoundedOutOfOrdernessTimestampExtractor: 这也是一个
AssignerWithPeriodicWatermarks
的实现,表示已知数据的最大延迟。val withTimestampsAndWatermarks = stream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[MyEvent](Time.seconds(10))( _.getCreationTime ))
这两种Timestamp Assigner 一是可以直接使用,二是可以作为学习的代码示例。
Latency
即使采用watermark 技术,对于watermark(t) 也可能存在时间戳小于t却没有到达的数据,在现实中,延迟可能是无上限的,这种情况下,不可能无限等待下去;另外,即使延迟有限,但如果让watermark 延迟太多也不好,因为延迟太多可能就失去了实时的意义。所以,必须要作出选择。
默认情况下,延迟超过watermark的数据会被丢弃,但 Flink 允许在窗口操作上指定最大延迟,我们用N表示支持的最大延迟(N默认为0),对于窗口 [start_time, end_time)] ,数据迟于 watermark(t) 但先于end_time+N到达的,仍然会添加到窗口中再次触发计算。为了支持这种情况,Flink 需要保持这个窗口state 到时间戳 end_time + N ,当时间到达end_time+N后,Flink 删除窗口和state。
stream .keyBy(<key selector>) .window(<window assigner>) .allowedLateness(<time>) .<windowed transformation>(<window function>)
3. 总结
本文主要介绍Flink 中Event Time 和Watermark。由于Event Time 具有业务意义,且具有确定性,所以Event Time 应用广泛,但由于在现实中存在延迟和乱序问题,Flink 采用了 Watermark 来解决这个问题。
作者:此星爷非彼星爷
链接:https://www.jianshu.com/p/84310eaf59fa
共同学习,写下你的评论
评论加载中...
作者其他优质文章