Spark Streaming程序的停止可以是强制停止、异常停止或其他方式停止。
首先我们看StreamingContext的stop()方法
def stop( stopSparkContext: Boolean = conf.getBoolean("spark.streaming.stopSparkContextByDefault", true) ): Unit = synchronized { stop(stopSparkContext, false) }
这里定义了两个参数,stopSparkContext可以通过配置文件定义,接着看接收两个参数的stop方法,代码如下
/** * Stop the execution of the streams, with option of ensuring all received data * has been processed. * * @param stopSparkContext if true, stops the associated SparkContext. The underlying SparkContext * will be stopped regardless of whether this StreamingContext has been * started. * @param stopGracefully if true, stops gracefully by waiting for the processing of all * received data to be completed */def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = { var shutdownHookRefToRemove: AnyRef = null if (AsynchronousListenerBus.withinListenerThread.value) { throw new SparkException("Cannot stop StreamingContext within listener thread of" + " AsynchronousListenerBus") } synchronized { try { state match { case INITIALIZED => logWarning("StreamingContext has not been started yet") case STOPPED => logWarning("StreamingContext has already been stopped") case ACTIVE => scheduler.stop(stopGracefully) // Removing the streamingSource to de-register the metrics on stop() env.metricsSystem.removeSource(streamingSource) uiTab.foreach(_.detach()) StreamingContext.setActiveContext(null) waiter.notifyStop() if (shutdownHookRef != null) { shutdownHookRefToRemove = shutdownHookRef shutdownHookRef = null } logInfo("StreamingContext stopped successfully") } } finally { // The state should always be Stopped after calling `stop()`, even if we haven't started yet state = STOPPED } } if (shutdownHookRefToRemove != null) { ShutdownHookManager.removeShutdownHook(shutdownHookRefToRemove) } // Even if we have already stopped, we still need to attempt to stop the SparkContext because // a user might stop(stopSparkContext = false) and then call stop(stopSparkContext = true). if (stopSparkContext) sc.stop() }
注释中说明要停止程序时,正确的方式是需要所有接收的数据被处理完成后再停止,那么就需要我们传入的stopGracefully参数为true,然后停止时会等待所有任务执行完成
Spark Streaming提供了一个优雅停止的方法,在StreamingContext里面有一个stopOnShutdown()方法,代码如下
private def stopOnShutdown(): Unit = { val stopGracefully = conf.getBoolean("spark.streaming.stopGracefullyOnShutdown", false) logInfo(s"Invoking stop(stopGracefully=$stopGracefully) from shutdown hook") // Do not stop SparkContext, let its own shutdown hook stop it stop(stopSparkContext = false, stopGracefully = stopGracefully) }
stopOnShutdown()方法是什么意思呢,在我们的程序退出时,不管是正常退出或异常退出,stopOnShutdown()方法都会被回调,然后调用stop方法。stopGracefully 可以通过配置项spark.streaming.stopGracefullyOnShutdown配置,生产环境需要配置为true.
stopOnShutdown()方法是怎样被调用的呢?在StreamingContext的start方法中有一行代码
shutdownHookRef = ShutdownHookManager.addShutdownHook(StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)
添加stopOnShutdown函数到ShutdownHookManager中,addShutdownHook代码如下
def addShutdownHook(priority: Int)(hook: () => Unit): AnyRef = { shutdownHooks.add(priority, hook) }
看SparkShutdownHookManager 里都有什么,看代码注释了解SparkShutdownHookManager的功能,不一一介绍
private [util] class SparkShutdownHookManager { // 优先级队列,优先级越大,越优先执行 private val hooks = new PriorityQueue[SparkShutdownHook]() @volatile private var shuttingDown = false /** * Install a hook to run at shutdown and run all registered hooks in order. Hadoop 1.x does not * have `ShutdownHookManager`, so in that case we just use the JVM's `Runtime` object and hope for * the best. */ // 这里实例化一个线程,添加到jvm的关闭钩子中,等到jvm退出时才会被调用 def install(): Unit = { val hookTask = new Runnable() { override def run(): Unit = runAll() } Try(Utils.classForName("org.apache.hadoop.util.ShutdownHookManager")) match { case Success(shmClass) => val fsPriority = classOf[FileSystem] .getField("SHUTDOWN_HOOK_PRIORITY") .get(null) // static field, the value is not used .asInstanceOf[Int] val shm = shmClass.getMethod("get").invoke(null) shm.getClass().getMethod("addShutdownHook", classOf[Runnable], classOf[Int]) .invoke(shm, hookTask, Integer.valueOf(fsPriority + 30)) case Failure(_) => Runtime.getRuntime.addShutdownHook(new Thread(hookTask, "Spark Shutdown Hook")); } } // jvm退出时钩子回调此函数 def runAll(): Unit = { shuttingDown = true var nextHook: SparkShutdownHook = null //循环从优先级队列取数据执行,优先级越大,越优先执行 while ({ nextHook = hooks.synchronized { hooks.poll() }; nextHook != null }) { Try(Utils.logUncaughtExceptions(nextHook.run())) } } def add(priority: Int, hook: () => Unit): AnyRef = { hooks.synchronized { if (shuttingDown) { throw new IllegalStateException("Shutdown hooks cannot be modified during shutdown.") } val hookRef = new SparkShutdownHook(priority, hook) hooks.add(hookRef) hookRef } } def remove(ref: AnyRef): Boolean = { hooks.synchronized { hooks.remove(ref) } } }
看到这里就明白了,把stopOnShutdown()函数放入SparkShutdownHookManager 中的优化级队列hooks中,默认优先级为51,jvm退出时启动一个线程,调用runAll()方法,然后从hooks队列中一个一个取数据(函数),然后执行,就调用了stopOnShutdown()函数,接着调用stop()函数,我们的应用程序就可以优雅的执行停止工作了。
作者:海纳百川_spark
链接:https://www.jianshu.com/p/18cd94b5c647
共同学习,写下你的评论
评论加载中...
作者其他优质文章