为了账号安全,请及时绑定邮箱和手机立即绑定

Spark Streaming一致性、容错机制分析

标签:
Spark

Spark Streaming容错机制保障

Spark Streaming主要有三处做了数据容错机制:

  • Reciever测:

    • WriteAheadLogBasedStoreResult通过storeBlock()方法保存到blockManager和WAL中;

  • Driver测:

    • ReceivedBlockTracker: 处理收到reciever和driver scheduler的调度信息时,会将触发的时间信息保存至wal中(此处类似mysql的redo日志);

    • Checkpoint机制: 在driver shechuler触发time时间下的generateJob()之后保存这个时间的checkpoint信息,以保障任务突然失败后的恢复逻辑;

Reciever测

WriteAheadLogBasedStoreResult容错逻辑,并行地保存block至blockManager和WAL中,分两步介绍。

Reciever将block保存至blockManager

如果不配置使用wal,保存至blockManager的storeageLevel是用户手动指定的,在kafka中默认的level为:StorageLevel.MEMORY_AND_DISK_SER_2;

如果配置使用wal,则会忽略用户使用的storageLevel,使用如下的storageLevel等级,默认可以使用memory和disk,同时1个备份:

  private val blockStoreTimeout = conf.getInt(    "spark.streaming.receiver.blockStoreTimeout", 30).seconds

  private val effectiveStorageLevel = {    if (storageLevel.deserialized) {
      logWarning(s"Storage level serialization ${storageLevel.deserialized} is not supported when" +
        s" write ahead log is enabled, change to serialization false")
    }    if (storageLevel.replication > 1) {
      logWarning(s"Storage level replication ${storageLevel.replication} is unnecessary when " +
        s"write ahead log is enabled, change to replication 1")
    }

    StorageLevel(storageLevel.useDisk, storageLevel.useMemory, storageLevel.useOffHeap, false, 1)
  }  if (storageLevel != effectiveStorageLevel) {
    logWarning(s"User defined storage level $storageLevel is changed to effective storage level " +
      s"$effectiveStorageLevel when write ahead log is enabled")
  }

写入WAL

该次write,会调用flush()强制落盘,所以一旦返回,一定保障数据写入、备份成功。

问题1: 该wal并不会用于recover,因为在reciver测并没有找到recover的接口,那该wal有什么用途呢?

当然保障数据的安全性了,在driver测会保存blockInfo信息,一定要保障blockInfo信息对应的block存在;

问题2:该wal因为保存真实的数据,会占用不少空间,它的清理逻辑是怎样的?

当该batch完成之后,会触发一个ClearMetadata()事件,程序判定是否开启wal,如果开启则会清理该batch对应的wal;

  def onBatchCompletion(time: Time) {
    eventLoop.post(ClearMetadata(time))
  }

Driver测

ReceivedBlockTracker

ReceivedBlockTracker测的wal是跟配置没有关系的,具体参考该issue:https://issues.apache.org/jira/browse/SPARK-7139,它的作用是将接收到的各个事件(保存的信息很少),输出至wal中(该名字虽然叫wal,跟上述的wal概念还是不一样的);

其保存的具体信息有,在ReceivedBlockTracker类中搜索writeToLog方法即可,可以发现有如下三处:

writeToLog(BlockAdditionEvent(receivedBlockInfo)
writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks)
writeToLog(BatchCleanupEvent(timesToCleanup)// 对应的事件类private[streaming] case class BlockAdditionEvent(receivedBlockInfo: ReceivedBlockInfo)
  extends ReceivedBlockTrackerLogEventprivate[streaming] case class BatchAllocationEvent(time: Time, allocatedBlocks: AllocatedBlocks)
  extends ReceivedBlockTrackerLogEventprivate[streaming] case class BatchCleanupEvent(times: Seq[Time])
  extends ReceivedBlockTrackerLogEvent  
  
ReceivedBlockInfo(
    streamId: Int,
    numRecords: Option[Long],
    metadataOption: Option[Any],
    blockStoreResult: ReceivedBlockStoreResult
  ) private[streaming] trait ReceivedBlockStoreResult {  // Any implementation of this trait will store a block id
  def blockId: StreamBlockId  // Any implementation of this trait will have to return the number of records
  def numRecords: Option[Long]
}  

private[streaming] case class WriteAheadLogBasedStoreResult(
    blockId: StreamBlockId,
    numRecords: Option[Long],
    walRecordHandle: WriteAheadLogRecordHandle
  ) private[streaming] case class FileBasedWriteAheadLogSegment(path: String, offset: Long, length: Int)
  extends WriteAheadLogRecordHandle  
  
case class AllocatedBlocks(streamIdToAllocatedBlocks: Map[Int, Seq[ReceivedBlockInfo]]) {  def getBlocksOfStream(streamId: Int): Seq[ReceivedBlockInfo] = {
    streamIdToAllocatedBlocks.getOrElse(streamId, Seq.empty)
  }
}

可以看出其保存的核心信息为ReceivedBlockInfo,其具体包含有:

  • streamId: 每个stream的唯一标示;

  • numRecords: 该batch包含的记录数量;

  • metaDataOption: 可选metaData信息;

  • blockStoreResult: ReceivedBlockStoreResult是一个trait,根据该字段可以判定其在reciever测是否使用wal,同时会保存blockId -> (path, offset, length)的映射;

该实现默认是在初始化时开启恢复逻辑的,其逻辑类似于许多存储引擎的回放,具体实现如下:

  // Recover block information from write ahead logs
  if (recoverFromWriteAheadLog) {
    recoverPastEvents()
  }
  
  llocated block info) prior to failure.
   */  private def recoverPastEvents(): Unit = synchronized {    // Insert the recovered block information
    def insertAddedBlock(receivedBlockInfo: ReceivedBlockInfo) {
      logTrace(s"Recovery: Inserting added block $receivedBlockInfo")
      receivedBlockInfo.setBlockIdInvalid()
      getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo
    }    // Insert the recovered block-to-batch allocations and clear the queue of received blocks
    // (when the blocks were originally allocated to the batch, the queue must have been cleared).
    def insertAllocatedBatch(batchTime: Time, allocatedBlocks: AllocatedBlocks) {
      logTrace(s"Recovery: Inserting allocated batch for time $batchTime to " +
        s"${allocatedBlocks.streamIdToAllocatedBlocks}")
      streamIdToUnallocatedBlockQueues.values.foreach { _.clear() }
      timeToAllocatedBlocks.put(batchTime, allocatedBlocks)
      lastAllocatedBatchTime = batchTime
    }    // Cleanup the batch allocations
    def cleanupBatches(batchTimes: Seq[Time]) {
      logTrace(s"Recovery: Cleaning up batches $batchTimes")
      timeToAllocatedBlocks --= batchTimes
    }

    writeAheadLogOption.foreach { writeAheadLog =>
      logInfo(s"Recovering from write ahead logs in ${checkpointDirOption.get}")
      writeAheadLog.readAll().asScala.foreach { byteBuffer =>
        logInfo("Recovering record " + byteBuffer)
        Utils.deserialize[ReceivedBlockTrackerLogEvent](
          JavaUtils.bufferToArray(byteBuffer), Thread.currentThread().getContextClassLoader) match {          case BlockAdditionEvent(receivedBlockInfo) =>
            insertAddedBlock(receivedBlockInfo)          case BatchAllocationEvent(time, allocatedBlocks) =>
            insertAllocatedBatch(time, allocatedBlocks)          case BatchCleanupEvent(batchTimes) =>
            cleanupBatches(batchTimes)
        }
      }
    }
  }

Checkpoint

class Checkpoint(ssc: StreamingContext, val checkpointTime: Time)
  extends Logging with Serializable {
  val master = ssc.sc.master
  val framework = ssc.sc.appName
  val jars = ssc.sc.jars
  val graph = ssc.graph
  val checkpointDir = ssc.checkpointDir
  val checkpointDuration = ssc.checkpointDuration
  val pendingTimes = ssc.scheduler.getPendingTimes().toArray
  val sparkConfPairs = ssc.conf.getAll  def createSparkConf(): SparkConf = {
  }
}

通过Checkpoint类可以看出,其保存至hdfs的信息有:

  • master: Spark运行master;

  • framework: Spark启动名字;

  • jars: Spark运行依赖jars;

  • graph: Streaming运行依赖graph图(我理解是所依赖的rdd信息);

  • checkpointDir: checkpoint路径;

  • checkpointDuration: checkpoint周期;

  • pendingTimes:  调度pending时间;

  • sparkConfPairs: sparkConf;

其保存和恢复逻辑较为简单:

保存:每个batch时间都会保存该checkpoit(当然checkpoint周期也可以设置);
恢复:启动driver时,会首先尝试从checkpoint中恢复;



作者:分裂四人组
链接:https://www.jianshu.com/p/f721f6cb681a


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消