简介
最近项目中需要对计算任务进行性能优化,从各个方面入手,当考虑到日志性能的时候,从网上了解到的目前常用的日志框架有Logging、Logback、Log4j、Log4j2等等。
据反映Logback和Log4j2的性能明显优于其他两个,而Log4j2性能更可能优于Logback。
纸上得来终觉浅,绝知此事要躬行!!!
下面就对这四个日志,做一下简单的单线程性能测试
测试工具:jmh
测量模型:平均时间
测量策略:每个框架分别在单线程运行100次、1000次、10000次,打印日志到日志文件,最后对比消耗时间的平均值
Logging
java.util.logging,该包是jdk自带的日志框架。上代码
性能测试类
package com.smxknife.log.java.demo03;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import java.io.IOException;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.*;
/**
* @author smxknife
* 2018-12-19
*/
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Thread)
public class PerformLogTest {
private static final Logger logger = Logger.getLogger(PerformLogTest.class.getName());
@Param({"100", "1000", "10000"})
int loopNum;
int[] loopIdx;
@Setup
public void setup() {
loopIdx = new int[loopNum];
for (int i = 0; i < loopNum; i++) {
loopIdx[i] = i;
}
try {
logger.setLevel(java.util.logging.Level.FINEST);
FileHandler fileHandler = new FileHandler("./target/perform.log");
fileHandler.setLevel(Level.ALL);
fileHandler.setFormatter(new Formatter() {
@Override
public String format(LogRecord record) {
return record.getLevel().getName()
+ " : " + record.getThreadID()
+ " " + record.getSourceClassName()
+ "." + record.getSourceMethodName()
+ " " + record.getMessage()
+ "\r\n";
}
});
logger.addHandler(fileHandler);
} catch (IOException e) {
e.printStackTrace();
}
}
@Benchmark
public void test(Blackhole blackhole) {
int tmp = 0;
for (int i = 0; i < loopIdx.length; i++) {
logger.finer("test " + i);
}
}
}
jmh部分直接这里不是重点,先忽略,看日志部分,test方法,就是测试类,分别循环100、1000、10000次,将日志输出到日志文件中。因为这里没有采用spring等应用框架,而Logging默认是输出到控制台,这里加了一个FileHandler用于将日志输出到日志文件
调用类
public class Main {
public static void main(String[] args) throws RunnerException {
Options options = new OptionsBuilder()
.include(PerformLogTest.class.getName())
.warmupIterations(5)
.measurementIterations(5)
.forks(1)
.build();
new Runner(options).run();
}
}
从这里看,预热5次,执行5次,单线程,执行的结果如下(忽略其他输出,只看最后总结):
Benchmark (loopNum) Mode Cnt Score Error Units
PerformLogTest.test 100 avgt 5 2.383 ± 0.818 ms/op
PerformLogTest.test 1000 avgt 5 23.277 ± 5.684 ms/op
PerformLogTest.test 10000 avgt 5 228.775 ± 29.695 ms/op
- 循环100时,执行一次所需时间为2.383 毫秒
- 循环1000时,执行一次所需时间为23.277 毫秒
- 循环10000时,执行一次所需时间为228.775 毫秒
Logback
logback是一个小巧灵活的日志框架,在很多项目中都有用到,spring中也集成了starter。这个框架的优点…,网上一堆,不说了,上代码。
性能测试类
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Thread)
public class PerformLogTest {
private static Logger logger;
@Param({"100", "1000", "10000"})
int loopNum;
int[] loopIdx;
@Setup
public void setup() {
loopIdx = new int[loopNum];
for (int i = 0; i < loopNum; i++) {
loopIdx[i] = i;
}
LoadXmlConfig.loadConfig("logback.demo02.xml");
logger = LoggerFactory.getLogger(PerformLogTest.class);
}
@Benchmark
public void test(Blackhole blackhole) {
int tmp = 0;
for (int i = 0; i < loopIdx.length; i++) {
logger.error("test " + i);
}
}
}
测试方法同样是test方法,循环长度和次数同上。调用类也同上,就不贴出来了。
因为这里采用了xml文件做logback的配置文件,而我有不同的配置文件,我不想频繁的改动,就写了一个加载自定义的xml的配置类LoadXmlConfig
public class LoadXmlConfig {
/**
* 自定义logback的xml配置文件并加载
* @param fileName
*/
public static void loadConfig(String fileName) {
if (fileName == null || "".equals(fileName)) return;
String resPath = System.getProperty("user.dir") + File.separator
+ "src" + File.separator
+ "main" + File.separator
+ "resources" + File.separator;
File file = new File(resPath + fileName);
LoggerContext loggerContext = (LoggerContext) LoggerFactory.getILoggerFactory();
JoranConfigurator joranConfigurator = new JoranConfigurator();
joranConfigurator.setContext(loggerContext);
loggerContext.reset();
try {
joranConfigurator.doConfigure(file);
} catch (JoranException e) {
e.printStackTrace();
}
StatusPrinter.printInCaseOfErrorsOrWarnings(loggerContext);
}
}
这里做的比较简化,就是去resource下面寻找名字相同的配置文件,下面看看配置文件
<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false" scan="true" scanPeriod="30 second">
<property name="ROOT" value="target/logs/" />
<property name="FILE_SIZE" value="500MB" />
<property name="MAX_HISTORY" value="100" />
<timestamp key="DATETIME" datePattern="yyyy-MM-dd HH:mm:ss" />
<!-- 控制台打印 -->
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder charset="utf-8">
<pattern>[%-5level] %d{${DATETIME}} [%thread] %logger{36} - %m%n
</pattern>
</encoder>
</appender>
<!-- ERROR 输入到文件,按日期和文件大小 -->
<appender name="ERROR" class="ch.qos.logback.core.rolling.RollingFileAppender">
<encoder charset="utf-8">
<pattern>[%-5level] %d{${DATETIME}} [%thread] %logger{36} - %m%n
</pattern>
</encoder>
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>ERROR</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${ROOT}%d/error.%i.log</fileNamePattern>
<maxHistory>${MAX_HISTORY}</maxHistory>
<timeBasedFileNamingAndTriggeringPolicy
class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
<maxFileSize>${FILE_SIZE}</maxFileSize>
</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>
</appender>
<!-- WARN 输入到文件,按日期和文件大小 -->
<appender name="WARN" class="ch.qos.logback.core.rolling.RollingFileAppender">
<encoder charset="utf-8">
<pattern>[%-5level] %d{${DATETIME}} [%thread] %logger{36} - %m%n
</pattern>
</encoder>
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>WARN</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${ROOT}%d/warn.%i.log</fileNamePattern>
<maxHistory>${MAX_HISTORY}</maxHistory>
<timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
<maxFileSize>${FILE_SIZE}</maxFileSize>
</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>
</appender>
<!-- INFO 输入到文件,按日期和文件大小 -->
<appender name="INFO" class="ch.qos.logback.core.rolling.RollingFileAppender">
<encoder charset="utf-8">
<pattern>[%-5level] %d{${DATETIME}} [%thread] %logger{36} - %m%n
</pattern>
</encoder>
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>INFO</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${ROOT}%d/info.%i.log</fileNamePattern>
<maxHistory>${MAX_HISTORY}</maxHistory>
<timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
<maxFileSize>${FILE_SIZE}</maxFileSize>
</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>
</appender>
<!-- DEBUG 输入到文件,按日期和文件大小 -->
<appender name="DEBUG" class="ch.qos.logback.core.rolling.RollingFileAppender">
<encoder charset="utf-8">
<pattern>[%-5level] %d{${DATETIME}} [%thread] %logger{36} - %m%n
</pattern>
</encoder>
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>DEBUG</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${ROOT}%d/debug.%i.log</fileNamePattern>
<maxHistory>${MAX_HISTORY}</maxHistory>
<timeBasedFileNamingAndTriggeringPolicy
class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
<maxFileSize>${FILE_SIZE}</maxFileSize>
</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>
</appender>
<!-- TRACE 输入到文件,按日期和文件大小 -->
<appender name="TRACE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<encoder charset="utf-8">
<pattern>[%-5level] %d{${DATETIME}} [%thread] %logger{36} - %m%n
</pattern>
</encoder>
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>TRACE</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<rollingPolicy
class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${ROOT}%d/trace.%i.log</fileNamePattern>
<maxHistory>${MAX_HISTORY}</maxHistory>
<timeBasedFileNamingAndTriggeringPolicy
class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
<maxFileSize>${FILE_SIZE}</maxFileSize>
</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>
</appender>
<!-- SQL相关日志输出-->
<logger name="com.smxknife.log.logback" level="INFO" additivity="true">
</logger>
<!-- Logger 根目录 -->
<root level="ERROR">
<appender-ref ref="ERROR" />
</root>
</configuration>
执行结果如下:
Benchmark (loopNum) Mode Cnt Score Error Units
PerformLogTest.test 100 avgt 5 0.991 ± 0.420 ms/op
PerformLogTest.test 1000 avgt 5 9.655 ± 2.735 ms/op
PerformLogTest.test 10000 avgt 5 94.608 ± 17.062 ms/op
- 循环100时,执行一次所需时间为0.991 毫秒
- 循环1000时,执行一次所需时间为9.655 毫秒
- 循环10000时,执行一次所需时间为94.608 毫秒
看结果貌似确实比Logging优秀很多
Log4j
上代码
package com.smxknife.log.log4j.demo02;
import org.apache.log4j.Logger;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import java.util.concurrent.TimeUnit;
/**
* @author smxknife
* 2018-12-19
*/
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Thread)
public class PerformLogTest {
private static Logger logger;
@Param({"100", "1000", "10000"})
int loopNum;
int[] loopIdx;
@Setup
public void setup() {
loopIdx = new int[loopNum];
for (int i = 0; i < loopNum; i++) {
loopIdx[i] = i;
}
logger = Logger.getLogger(this.getClass().getSimpleName());
}
@Benchmark
public void test(Blackhole blackhole) {
int tmp = 0;
for (int i = 0; i < loopIdx.length; i++) {
logger.error("test " + i);
}
}
}
配置如下
### set log levels ###
log4j.rootLogger = ERROR,File
### 输出到控制台 ###
log4j.appender.Console=org.apache.log4j.ConsoleAppender
log4j.appender.Console.Target=System.out
log4j.appender.Console.layout=org.apache.log4j.PatternLayout
log4j.appender.Console.layout.ConversionPattern= %d{ABSOLUTE} %5p %c{1}:%L - %m%n
### 输出到日志文件 ###
log4j.appender.File=org.apache.log4j.RollingFileAppender
log4j.appender.File.File=${user.dir}/target/logs/app.log
log4j.appender.File.DatePattern=_yyyyMMdd'.log'
log4j.appender.File.MaxFileSize=500MB
log4j.appender.File.Threshold=ALL
log4j.appender.File.layout=org.apache.log4j.PatternLayout
log4j.appender.File.layout.ConversionPattern=[%p][%d{yyyy-MM-dd HH\:mm\:ss,SSS}][%c]%m%n
测试结果
Benchmark (loopNum) Mode Cnt Score Error Units
PerformLogTest.test 100 avgt 5 1.069 ± 0.350 ms/op
PerformLogTest.test 1000 avgt 5 10.558 ± 5.448 ms/op
PerformLogTest.test 10000 avgt 5 93.073 ± 19.872 ms/op
- 循环100时,执行一次所需时间为1.069 毫秒
- 循环1000时,执行一次所需时间为10.558 毫秒
- 循环10000时,执行一次所需时间为93.073 毫秒
从这三次测试结果来看log4j与logback性能基本差不多,这与我想象中的貌似不一样,我以为logback会明显优秀于log4j,然而在这几种情况下并没有
Log4j2
这个结果是我没有想到的,不知道是不是哪里出了什么问题,先上代码吧
package com.smxknife.log.log4j2.demo02;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import java.util.concurrent.TimeUnit;
/**
* @author smxknife
* 2018-12-19
*/
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Thread)
public class PerformLogTest {
private static Logger logger;
@Param({"100", "1000", "10000"})
int loopNum;
int[] loopIdx;
@Setup
public void setup() {
loopIdx = new int[loopNum];
for (int i = 0; i < loopNum; i++) {
loopIdx[i] = i;
}
logger = LogManager.getLogger(this.getClass().getSimpleName());
}
@Benchmark
public void test(Blackhole blackhole) {
int tmp = 0;
for (int i = 0; i < loopIdx.length; i++) {
logger.error("test " + i);
}
}
}
log4j2.xml
<?xml version="1.0" encoding="UTF-8"?>
<Configuration monitorInterval="1" status="ERROR" strict="true" name="LogConfig">
<Properties>
<Property name="logbasedir">target/logs</Property>
<Property name="log.layout">%d %-5p %t (%c:%L) - %m%n</Property>
<property name="APP_NAME">app</property>
</Properties>
<!--<--此处使用了两种类型的appender,RollingFile为滚动类型,满足策略条件后会新建文件夹记录 –>-->
<Appenders>
<Appender type="Console" name="STDOUT">
<Target>SYSTEM_OUT</Target>
<Layout type="PatternLayout" pattern="${log.layout}"/>
</Appender>
<Appender type="RollingFile" name="FILE" fileName="${logbasedir}/jutap-${sys:APP_NAME}.log"
filePattern = "${logbasedir}/jutap-${sys:APP_NAME}-%d{yyyy-MM-dd}.%i.log">
<Policies>
<TimeBasedTriggeringPolicy />
<SizeBasedTriggeringPolicy size="1000 MB"/>
</Policies>
<Layout type="PatternLayout">
<Charset>GBK</Charset>
<Pattern>${log.layout}</Pattern>
</Layout>
</Appender>
<!--<Appender type="RollingFile" name="ExceptionLog" fileName="${logbasedir}/exception-${sys:APP_NAME}.log"-->
<!--filePattern = "${logbasedir}/exception-${sys:APP_NAME}-%d{yyyy-MM-dd}.%i.log">-->
<!--<Policies>-->
<!--<TimeBasedTriggeringPolicy />-->
<!--<SizeBasedTriggeringPolicy size="100 MB"/>-->
<!--</Policies>-->
<!--<Layout type="PatternLayout">-->
<!--<Charset>GBK</Charset>-->
<!--<Pattern>${log.layout}</Pattern>-->
<!--</Layout>-->
<!--</Appender>-->
</Appenders>
<Loggers>
<!--<Logger name="exception" level="error" additivity="false">-->
<!--<AppenderRef ref="ExceptionLog"/>-->
<!--</Logger>-->
<Root level="info">
<!--<AppenderRef ref="STDOUT"/>-->
<AppenderRef ref="FILE"/>
</Root>
<Logger name="om.smxknife.log.log4j2" level="error"/>
</Loggers>
</Configuration>
测试结果如下:
Benchmark (loopNum) Mode Cnt Score Error Units
PerformLogTest.test 100 avgt 5 6.474 ± 2.481 ms/op
PerformLogTest.test 1000 avgt 5 59.621 ± 5.881 ms/op
PerformLogTest.test 10000 avgt 5 609.273 ± 69.103 ms/op
- 循环100时,执行一次所需时间为6.474 毫秒
- 循环1000时,执行一次所需时间为59.621 毫秒
- 循环10000时,执行一次所需时间为609.273 毫秒
一个出人意料的结果,竟然执行的速度这么慢是logback和log4j的6倍左右
总结
目前先做到这里,这里还存在很多疑问,留待继续试验。
由于环境的限制,所有的测试都是在自己的笔记本上做的,难以做到高性能极限测试。
另外,由于预热功能需要预热多次,这里只有5次,有点不足。
还有一个变量,没有控制好,就是日志输出的格式,这里没有做到一致,或差不多的情况,后面需要把这点控制一下。
除此之外,上面的都是单独执行每一个测试,后面整合到一个测试例子中。
上面只有执行的平均时间测试,后面再加上所有的测试
共同学习,写下你的评论
评论加载中...
作者其他优质文章