为了账号安全,请及时绑定邮箱和手机立即绑定

Data Science Day 20:

When we are watching Soccer games, at the beginning of the match, the screen will show the basic info for each team. Suppose we want to know is there any difference between the average age between Real Madrid and Barcelona pl****ayers, What statistical test should we use?

image

RonnyK / Pixabayimage

kappilrinesh / Pixabay[/caption]

Answer:

We can use T-test to determine whether there is a significant difference between the means of two groups.

T-test assumptions:

  • The dependent variable is Normally distributed
    Note, identify the probability of a particular outcome
  • Independent observations
  • The dependent variable is Continuous.
  • No outliers

Example: Kaggle FIFA 2018 dataset

Null Hypothesis H0: There is NO significant difference between the age of  Real Madrid and Barcelona’s players.

  1. We choose the variable Age and Club (Real Madrid, Barcelona).
    image

import packages

import numpy as np
from scipy import stats
import pandas as pd
import matplotlib.pyplot as plt
import statistics as st
import seaborn as sns

data1= data[["club","age"]]
data2=data1.loc[data1["club"].isin(["Real Madrid CF", "FC Barcelona"])
  1. **Histogram Graph for Age **

image

data3=data1.loc[data1["club"].isin(["Real Madrid CF"])]
data4=data1.loc[data1["club"].isin(["FC Barcelona"])]

plt.hist(data3.age, bins="auto", color="c" ,edgecolor="k",alpha=0.5)
plt.hist(data4.age, bins="auto", color="r", alpha=0.5)
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title('Age Distribution in Barcelona vs MFC')

plt.show()

3**. Density Plot of Age**

image

#kde plot
df=pd.DataFrame({"mfc": data3.age, "barcelona":data4.age,})
ax=df.plot.kde()
plt.title("Density Plot for Players' Age in Barcelona vs MFC")
plt.show()

** 4. Statistical T-test **

stats.ttest_ind(data3.age,data4.age, equal_var=False)
Ttest_indResult(statistic=-1.9061510499479299, pvalue=0.062416380021536121)

Conclusion:

Although the Histogram graph does not show a normal distribution, the Density Plot represents some feature of the Normality for Age Distribution. Since the P-value= 0.06, we will Accept the Null Hypothesis: 
There is No significant difference in players age between Real Madrid and Barcelona.

Additional Info:

We used Non-direction (two sided) Ttest to generate the results,  but one question we can ask ourselves is how sure are we about the results?

  1. Type 1 error, Reject a null hypothesis that is True
    Predict there is a difference while in reality there’s no.
    p=0.05,  there is  a 5% chance we are making type 1 error
  2. Type 2 error, Accept a null hypothesis that is false
    Predict there  is no difference when the reality has one

In the previous example, we have a 2-level independent variable Club (Barcelona, Real Madrid), and one dependent variable age.

What if we have an independent variable more than 2 levels?
AC Milan, Barcelona, and Real Madrid ?

That will be ANOVA’s show!

Happy Studying! 🍉

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消