原文链接:『 Spark 』1. spark 简介
写在前面
本系列是综合了自己在学习spark过程中的理解记录 + 对参考文章中的一些理解 + 个人实践spark过程中的一些心得而来。写这样一个系列仅仅是为了梳理个人学习spark的笔记记录,并非为了做什么教程,所以一切以个人理解梳理为主,没有必要的细节就不会记录了。若想深入了解,最好阅读参考文章和官方文档。
其次,本系列是基于目前最新的 spark 1.6.0 系列开始的,spark 目前的更新速度很快,记录一下版本好还是必要的。
最后,如果各位觉得内容有误,欢迎留言备注,所有留言 24 小时内必定回复,非常感谢。
Tips: 如果插图看起来不明显,可以:1. 放大网页;2. 新标签中打开图片,查看原图哦。
1. 如何向别人介绍 spark
Apache Spark™ is a fast and general engine for large-scale data processing.
Apache Spark is a fast and general-purpose cluster computing system.
It provides high-level APIs in Java, Scala, Python and R
, and an optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including :
Spark SQL for SQL and structured data processing, extends to DataFrames and DataSets
MLlib for machine learning
GraphX for graph processing
Spark Streaming for stream data processing
2. spark 诞生的一些背景
introduction-to-spark-1.jpg
introduction-to-spark-2.jpg
Spark started in 2009, open sourced 2010, unlike the various specialized systems[hadoop, storm], Spark’s goal was to :
generalize MapReduce to support new apps within same engine
it's perfectly compatible with hadoop, can run on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, and S3.
speed up iteration computing over hadoop.
use memory + disk instead of disk as data storage medium
design a new programming modal, RDD, which make the data processing more graceful [RDD transformation, action, distributed jobs, stages and tasks]
introduction-to-spark-4.jpg
introduction-to-spark-5.jpg
3. 为何选用 spark
designed, implemented and used as libs, instead of specialized systems;
much more useful and maintainable
introduction-to-spark-3.jpg
from history, it is designed and improved upon hadoop and storm, it has perfect genes;
documents, community, products and trends;
it provides sql, dataframes, datasets, machine learning lib, graph computing lib and activitily growth 3-party lib, easy to use, cover lots of use cases in lots field;
it provides ad-hoc exploring, which boost your data exploring and pre-processing and help you build your data ETL, processing job;
4. Next
下一篇,简单介绍 spark 里必须深刻理解的基本概念。
作者:litaotao
链接:https://www.jianshu.com/p/d6d2acbd87fa
共同学习,写下你的评论
评论加载中...
作者其他优质文章