spark通信流程
概述
spark作为一套高效的分布式运算框架,但是想要更深入的学习它,就要通过分析spark的源码,不但可以更好的帮助理解spark的工作过程,还可以提高对集群的排错能力,本文主要关注的是Spark的Master的启动流程与Worker启动流程。
现在Spark最新版本为1.6,但是代码的逻辑不够清晰,不便于理解,这里以1.3为准
Master启动
我们启动一个Master是通过Shell命令启动了一个脚本start-master.sh
开始的,这个脚本的启动流程如下
start-master.sh -> spark-daemon.sh start org.apache.spark.deploy.master.Master
我们可以看到脚本首先启动了一个org.apache.spark.deploy.master.Master
类,启动时会传入一些参数,比如cpu的执行核数,内存大小,app的main方法等
查看Master类的main方法
private[spark] object Master extends Logging { val systemName = "sparkMaster" private val actorName = "Master" //master启动的入口 def main(argStrings: Array[String]) { SignalLogger.register(log) //创建SparkConf val conf = new SparkConf //保存参数到SparkConf val args = new MasterArguments(argStrings, conf) //创建ActorSystem和Actor val (actorSystem, _, _, _) = startSystemAndActor(args.host, args.port, args.webUiPort, conf) //等待结束 actorSystem.awaitTermination() }
这里主要看startSystemAndActor
方法
/** * Start the Master and return a four tuple of: * (1) The Master actor system * (2) The bound port * (3) The web UI bound port * (4) The REST server bound port, if any */ def startSystemAndActor( host: String, port: Int, webUiPort: Int, conf: SparkConf): (ActorSystem, Int, Int, Option[Int]) = { val securityMgr = new SecurityManager(conf) //利用AkkaUtils创建ActorSystem val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port, conf = conf, securityManager = securityMgr) val actor = actorSystem.actorOf( Props(classOf[Master], host, boundPort, webUiPort, securityMgr, conf), actorName) .... } }
spark底层通信使用的是Akka
通过ActorSystem创建Actor -> actorSystem.actorOf, 就会执行Master的构造方法->然后执行Actor生命周期方法
执行Master的构造方法初始化一些变量
private[spark] class Master( host: String, port: Int, webUiPort: Int, val securityMgr: SecurityManager, val conf: SparkConf) extends Actor with ActorLogReceive with Logging with LeaderElectable { //主构造器 //启用定期器功能 import context.dispatcher // to use Akka's scheduler.schedule() val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf) def createDateFormat = new SimpleDateFormat("yyyyMMddHHmmss") // For application IDs //woker超时时间 val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000 val RETAINED_APPLICATIONS = conf.getInt("spark.deploy.retainedApplications", 200) val RETAINED_DRIVERS = conf.getInt("spark.deploy.retainedDrivers", 200) val REAPER_ITERATIONS = conf.getInt("spark.dead.worker.persistence", 15) val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE") //一个HashSet用于保存WorkerInfo val workers = new HashSet[WorkerInfo] //一个HashMap用保存workid -> WorkerInfo val idToWorker = new HashMap[String, WorkerInfo] val addressToWorker = new HashMap[Address, WorkerInfo] //一个HashSet用于保存客户端(SparkSubmit)提交的任务 val apps = new HashSet[ApplicationInfo] //一个HashMap Appid-》 ApplicationInfo val idToApp = new HashMap[String, ApplicationInfo] val actorToApp = new HashMap[ActorRef, ApplicationInfo] val addressToApp = new HashMap[Address, ApplicationInfo] //等待调度的App val waitingApps = new ArrayBuffer[ApplicationInfo] val completedApps = new ArrayBuffer[ApplicationInfo] var nextAppNumber = 0 val appIdToUI = new HashMap[String, SparkUI] //保存DriverInfo val drivers = new HashSet[DriverInfo] val completedDrivers = new ArrayBuffer[DriverInfo] val waitingDrivers = new ArrayBuffer[DriverInfo] // Drivers currently spooled for scheduling
主构造器执行完就会执行preStart --》执行完receive方法
//启动定时器,进行定时检查超时的worker //重点看一下CheckForWorkerTimeOut context.system.scheduler.schedule(0 millis, WORKER_TIMEOUT millis, self, CheckForWorkerTimeOut)
preStart方法里创建了一个定时器,定时检查Woker的超时时间 val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000
默认为60秒
到此Master的初始化的主要过程到我们已经看到了,主要就是构造一个Master的Actor进行等待消息,并初始化了一堆集合来保存Worker信息,和一个定时器来检查Worker的超时
Master启动时序图
Woker的启动
通过Shell脚本执行salves.sh
-> 通过读取slaves 通过ssh的方式启动远端的workerspark-daemon.sh start org.apache.spark.deploy.worker.Worker
脚本会启动org.apache.spark.deploy.worker.Worker
类
看Worker源码
private[spark] object Worker extends Logging { //Worker启动的入口 def main(argStrings: Array[String]) { SignalLogger.register(log) val conf = new SparkConf val args = new WorkerArguments(argStrings, conf) //新创ActorSystem和Actor val (actorSystem, _) = startSystemAndActor(args.host, args.port, args.webUiPort, args.cores, args.memory, args.masters, args.workDir) actorSystem.awaitTermination() }
这里最重要的是Woker的startSystemAndActor
def startSystemAndActor( host: String, port: Int, webUiPort: Int, cores: Int, memory: Int, masterUrls: Array[String], workDir: String, workerNumber: Option[Int] = None, conf: SparkConf = new SparkConf): (ActorSystem, Int) = { // The LocalSparkCluster runs multiple local sparkWorkerX actor systems val systemName = "sparkWorker" + workerNumber.map(_.toString).getOrElse("") val actorName = "Worker" val securityMgr = new SecurityManager(conf) //通过AkkaUtils ActorSystem val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port, conf = conf, securityManager = securityMgr) val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl(_, AkkaUtils.protocol(actorSystem))) //通过actorSystem.actorOf创建Actor Worker-》执行构造器 -》 preStart -》 receice actorSystem.actorOf(Props(classOf[Worker], host, boundPort, webUiPort, cores, memory, masterAkkaUrls, systemName, actorName, workDir, conf, securityMgr), name = actorName) (actorSystem, boundPort) }
这里Worker同样的构造了一个属于Worker的Actor对象,到此Worker的启动初始化完成
Worker与Master通信
根据Actor生命周期接着Worker的preStart方法被调用
override def preStart() { assert(!registered) logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format( host, port, cores, Utils.megabytesToString(memory))) logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}") logInfo("Spark home: " + sparkHome) createWorkDir() context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent]) shuffleService.startIfEnabled() webUi = new WorkerWebUI(this, workDir, webUiPort) webUi.bind() //Worker向Master注册 registerWithMaster() .... }
这里调用了一个registerWithMaster方法,开始向Master注册
def registerWithMaster() { // DisassociatedEvent may be triggered multiple times, so don't attempt registration // if there are outstanding registration attempts scheduled. registrationRetryTimer match { case None => registered = false //开始注册 tryRegisterAllMasters() .... } }
registerWithMaster里通过匹配调用了tryRegisterAllMasters方法
,接下来看
private def tryRegisterAllMasters() { //遍历master的地址 for (masterAkkaUrl <- masterAkkaUrls) { logInfo("Connecting to master " + masterAkkaUrl + "...") //Worker跟Mater建立连接 val actor = context.actorSelection(masterAkkaUrl) //向Master发送注册信息 actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress) } }
通过masterAkkaUrl
和Master建立连接后actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)
Worker向Master发送了一个消息,带去一些参数,id,主机,端口,cpu核数,内存等待
override def receiveWithLogging = { ...... //接受来自Worker的注册信息 case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) => { logInfo("Registering worker %s:%d with %d cores, %s RAM".format( workerHost, workerPort, cores, Utils.megabytesToString(memory))) if (state == RecoveryState.STANDBY) { // ignore, don't send response //判断这个worker是否已经注册过 } else if (idToWorker.contains(id)) { //如果注册过,告诉worker注册失败 sender ! RegisterWorkerFailed("Duplicate worker ID") } else { //没有注册过,把来自Worker的注册信息封装到WorkerInfo当中 val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory, sender, workerUiPort, publicAddress) if (registerWorker(worker)) { //用持久化引擎记录Worker的信息 persistenceEngine.addWorker(worker) //向Worker反馈信息,告诉Worker注册成功 sender ! RegisteredWorker(masterUrl, masterWebUiUrl) schedule() } else { val workerAddress = worker.actor.path.address logWarning("Worker registration failed. Attempted to re-register worker at same " + "address: " + workerAddress) sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: " + workerAddress) } } }
这里是最主要的内容;
receiveWithLogging里会轮询到Worker发送的消息,
Master收到消息后将参数封装成WorkInfo对象添加到集合中,并加入到持久化引擎中sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
向Worker发送一个消息反馈
接下来看Worker的receiveWithLogging
override def receiveWithLogging = { case RegisteredWorker(masterUrl, masterWebUiUrl) => logInfo("Successfully registered with master " + masterUrl) registered = true changeMaster(masterUrl, masterWebUiUrl) //启动定时器,定时发送心跳Heartbeat context.system.scheduler.schedule(0 millis, HEARTBEAT_MILLIS millis, self, SendHeartbeat) if (CLEANUP_ENABLED) { logInfo(s"Worker cleanup enabled; old application directories will be deleted in: $workDir") context.system.scheduler.schedule(CLEANUP_INTERVAL_MILLIS millis, CLEANUP_INTERVAL_MILLIS millis, self, WorkDirCleanup) }
worker接受来自Master的注册成功的反馈信息,启动定时器,定时发送心跳Heartbeat
case SendHeartbeat => //worker发送心跳的目的就是为了报活 if (connected) { master ! Heartbeat(workerId) }
Master端的receiveWithLogging收到心跳消息
override def receiveWithLogging = { .... case Heartbeat(workerId) => { idToWorker.get(workerId) match { case Some(workerInfo) => //更新最后一次心跳时间 workerInfo.lastHeartbeat = System.currentTimeMillis() ..... } } }
记录并更新workerInfo.lastHeartbeat = System.currentTimeMillis()
最后一次心跳时间
Master的定时任务会不断的发送一个CheckForWorkerTimeOut
内部消息不断的轮询集合里的Worker信息,如果超过60秒就将Worker信息移除
//检查超时的Worker case CheckForWorkerTimeOut => { timeOutDeadWorkers() }
timeOutDeadWorkers方法
def timeOutDeadWorkers() { // Copy the workers into an array so we don't modify the hashset while iterating through it val currentTime = System.currentTimeMillis() val toRemove = workers.filter(_.lastHeartbeat < currentTime - WORKER_TIMEOUT).toArray for (worker <- toRemove) { if (worker.state != WorkerState.DEAD) { logWarning("Removing %s because we got no heartbeat in %d seconds".format( worker.id, WORKER_TIMEOUT/1000)) removeWorker(worker) } else { if (worker.lastHeartbeat < currentTime - ((REAPER_ITERATIONS + 1) * WORKER_TIMEOUT)) { workers -= worker // we've seen this DEAD worker in the UI, etc. for long enough; cull it } } } }
如果 (最后一次心跳时间<当前时间-超时时间)则判断为Worker超时,
将集合里的信息移除。
当下一次收到心跳信息时,如果是已注册过的,workerId不为空,但是WorkerInfo已被移除的条件,就会sender ! ReconnectWorker(masterUrl)
发送一个重新注册的消息
case None => if (workers.map(_.id).contains(workerId)) { logWarning(s"Got heartbeat from unregistered worker $workerId." + " Asking it to re-register.") //发送重新注册的消息 sender ! ReconnectWorker(masterUrl) } else { logWarning(s"Got heartbeat from unregistered worker $workerId." + " This worker was never registered, so ignoring the heartbeat.") }
Worker与Master时序图
Master与Worker启动以后的大致的通信流程到此,接下来就是如何启动集群上的Executor 进程计算任务了。
作者:那年的坏人
链接:https://www.jianshu.com/p/04454941dbac
共同学习,写下你的评论
评论加载中...
作者其他优质文章