为了账号安全,请及时绑定邮箱和手机立即绑定

Spark Streaming源码解读之Driver容错安全性

标签:
Spark

从数据层面,ReceivedBlockTracker为整个SparkStreaming应用程序记录元数据信息。

从调度层面,DStreamGraph和JobGenerator是Spark Streaming调度的核心,记录当前调度到哪一进度,和业务有关。

ReceivedBlockTracker在接收到元数据信息后调用addBlock方法,先写入磁盘中,然后在写入内存中。

ReceivedBlockTracker:

/** Add received block. This event will get written to the write ahead log (if enabled). */

defaddBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {

try {

val writeResult =writeToLog(BlockAdditionEvent(receivedBlockInfo))

if (writeResult) {

synchronized {

getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo

}

logDebug(s"Stream ${receivedBlockInfo.streamId} received " +

s"block ${receivedBlockInfo.blockStoreResult.blockId}")

} else {

logDebug(s"Failed to acknowledge stream ${receivedBlockInfo.streamId} receiving " +

s"block ${receivedBlockInfo.blockStoreResult.blockId} in the Write Ahead Log.")

}

writeResult

} catch {

case NonFatal(e) =>

logError(s"Error adding block $receivedBlockInfo", e)

false

}

}

ReceivedBlockTracker:

private type ReceivedBlockQueue = mutable.Queue[ReceivedBlockInfo]

// 为分配的ReceivedBlock

private val streamIdToUnallocatedBlockQueues = new mutable.HashMap[Int, ReceivedBlockQueue]

// 已分配的ReceivedBlock

private val timeToAllocatedBlocks = new mutable.HashMap[Time, AllocatedBlocks]

private val writeAheadLogOption = createWriteAheadLog()

根据batchTime分配属于当前BatchDuration要处理的数据到timToAllocatedBlocks数据结构中。

ReceivedBlockTracker:

/**

* Allocate all unallocated blocks to the given batch.

* This event will get written to the write ahead log (if enabled).

*/

def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {

if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {

val streamIdToBlocks = streamIds.map { streamId =>

(streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true))

}.toMap

val allocatedBlocks = AllocatedBlocks(streamIdToBlocks)

if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {

timeToAllocatedBlocks.put(batchTime, allocatedBlocks)

lastAllocatedBatchTime = batchTime

} else {

...

Time类的是一个case Class,记录时间,重载了操作符,隐式转换。

case class Time(private val millis: Long) {

def milliseconds: Long = millis

def < (that: Time): Boolean = (this.millis < that.millis)

def <= (that: Time): Boolean = (this.millis <= that.millis)

def > (that: Time): Boolean = (this.millis > that.millis)

def >= (that: Time): Boolean = (this.millis >= that.millis)

def + (that: Duration): Time = new Time(millis + that.milliseconds)

def - (that: Time): Duration = new Duration(millis - that.millis)

def - (that: Duration): Time = new Time(millis - that.milliseconds)

// Java-friendlier versions of the above.

def less(that: Time): Boolean = this < that

def lessEq(that: Time): Boolean = this <= that

def greater(that: Time): Boolean = this > that

def greaterEq(that: Time): Boolean = this >= that

def plus(that: Duration): Time = this + that

def minus(that: Time): Duration = this - that

def minus(that: Duration): Time = this - that

def floor(that: Duration): Time = {

val t = that.milliseconds

new Time((this.millis / t) * t)

}

def floor(that: Duration, zeroTime: Time): Time = {

val t = that.milliseconds

new Time(((this.millis - zeroTime.milliseconds) / t) * t + zeroTime.milliseconds)

}

def isMultipleOf(that: Duration): Boolean =

(this.millis % that.milliseconds == 0)

def min(that: Time): Time = if (this < that) this else that

def max(that: Time): Time = if (this > that) this else that

def until(that: Time, interval: Duration): Seq[Time] = {

(this.milliseconds) until (that.milliseconds) by (interval.milliseconds) map (new Time(_))

}

def to(that: Time, interval: Duration): Seq[Time] = {

(this.milliseconds) to (that.milliseconds) by (interval.milliseconds) map (new Time(_))

}

override def toString: String = (millis.toString + " ms")

}

object Time {

implicit val ordering = Ordering.by((time: Time) => time.millis)

}

跟踪Time对象,ReceiverTracker的allocateBlocksToBatch方法中的入参batchTime是被JobGenerator的generateJobs方法调用的。

ReceiverTracker:

/** Allocate all unallocated blocks to the given batch. */

def allocateBlocksToBatch(batchTime: Time): Unit = {

if (receiverInputStreams.nonEmpty) {

receivedBlockTracker.allocateBlocksToBatch(batchTime)

}

}

JobGenerator的generateJobs方法是被定时器发送GenerateJobs消息调用的。

JobGenerator:

/** Generate jobs and perform checkpoint for the given `time`.  */

private defgenerateJobs(time: Time) {

// Set the SparkEnv in this thread, so that job generation code can access the environment

// Example: BlockRDDs are created in this thread, and it needs to access BlockManager

// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.

SparkEnv.set(ssc.env)

Try {

jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch

graph.generateJobs(time) // generate jobs using allocated block

} match {

case Success(jobs) =>

val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)

jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))

case Failure(e) =>

jobScheduler.reportError("Error generating jobs for time " + time, e)

}

eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))

}

JobGenerator:

/** Processes all events */

private def processEvent(event: JobGeneratorEvent) {

logDebug("Got event " + event)

event match {

caseGenerateJobs(time) =>generateJobs(time)

case ClearMetadata(time) => clearMetadata(time)

case DoCheckpoint(time, clearCheckpointDataLater) =>

doCheckpoint(time, clearCheckpointDataLater)

case ClearCheckpointData(time) => clearCheckpointData(time)

}

}

JobGenerator:

private val timer = newRecurringTimer(clock, ssc.graph.batchDuration.milliseconds,

longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")

GenerateJobs中的时间参数就是nextTime,而nextTime+=period,这个period就是ssc.graph.batchDuration.milliseconds。

RecurringTimer:

private def triggerActionForNextInterval(): Unit = {

clock.waitTillTime(nextTime)

callback(nextTime)

prevTime = nextTime

nextTime += period

logDebug("Callback for " + name + " called at time " + prevTime)

}

nextTime的初始值是在start方法中传入的startTime赋值的,即RecurringTimer的getStartTime方法的返回值,是当前时间period的(整数倍+1)。

RecurringTimer:

/**

* Start at the given start time.

*/

def start(startTime: Long): Long = synchronized {

nextTime = startTime

thread.start()

logInfo("Started timer for " + name + " at time " + nextTime)

nextTime

}

JobGenerator:

/** Starts the generator for the first time */

private def startFirstTime() {

val startTime = newTime(timer.getStartTime())

graph.start(startTime - graph.batchDuration)

timer.start(startTime.milliseconds)

logInfo("Started JobGenerator at " + startTime)

}

RecurringTimer:

/**

* Get the time when this timer will fire if it is started right now.

* The time will be a multiple of this timer's period and more than

* current system time.

*/

def getStartTime(): Long = {

(math.floor(clock.getTimeMillis().toDouble / period) + 1).toLong * period

}

Period这个值是我们调用new StreamingContext来构造StreamingContext时传入的Duration值。

DStreamGraph:

def setBatchDuration(duration: Duration) {

this.synchronized {

require(batchDuration == null,

s"Batch duration already set as $batchDuration. Cannot set it again.")

batchDuration = duration

}

}

StreamingContext:

private[streaming] val graph: DStreamGraph = {

if (isCheckpointPresent) {

cp_.graph.setContext(this)

cp_.graph.restoreCheckpointData()

cp_.graph

} else {

require(batchDur_ != null, "Batch duration for StreamingContext cannot be null")

val newGraph = new DStreamGraph()

newGraph.setBatchDuration(batchDur_)

newGraph

}

}

ReceivedBlockTracker会清除过期的元数据信息,从HashMap中移除,也是先写入磁盘,然后在写入内存。

StreamingContext:

class StreamingContext private[streaming] (

sc_ : SparkContext,

cp_ : Checkpoint,

batchDur_ : Duration

) extends Logging {

/**

* Create a StreamingContext using an existing SparkContext.

* @param sparkContext existing SparkContext

* @param batchDuration the time interval at which streaming data will be divided into batches

*/

def this(sparkContext: SparkContext, batchDuration: Duration) = {

this(sparkContext, null, batchDuration)

}

元数据的生成,消费和销毁都有WAL,所以失败时就可以从日志中恢复。从源码分析中得出只有设置了checkpoint目录,才进行WAL机制。

ReceiverTracker:

class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false) extends Logging {

private val receiverInputStreams = ssc.graph.getReceiverInputStreams()

private val receiverInputStreamIds = receiverInputStreams.map { _.id }

private val receivedBlockTracker = newReceivedBlockTracker(

ssc.sparkContext.conf,

ssc.sparkContext.hadoopConfiguration,

receiverInputStreamIds,

ssc.scheduler.clock,

ssc.isCheckpointPresent,

Option(ssc.checkpointDir)

)

private val listenerBus = ssc.scheduler.listenerBus

对传入的checkpoint目录来创建日志目录进行WAL。

ReceivedBlockTracker:

/** Optionally create the write ahead log manager only if the feature is enabled */

private defcreateWriteAheadLog(): Option[WriteAheadLog] = {

checkpointDirOption.map { checkpointDir =>

val logDir = ReceivedBlockTracker.checkpointDirToLogDir(checkpointDirOption.get)

WriteAheadLogUtils.createLogForDriver(conf, logDir, hadoopConf)

}

}

这里是在checkpoint目录下创建文件夹名为receivedBlockMetadata的文件夹来保存WAL记录的数据。

ReceivedBlockTracker:

private[streaming] object ReceivedBlockTracker {

def checkpointDirToLogDir(checkpointDir: String): String = {

new Path(checkpointDir, "receivedBlockMetadata").toString

}

}

ReceivedBlockTracker:

/** Write an update to the tracker to the write ahead log */

private def writeToLog(record: ReceivedBlockTrackerLogEvent): Boolean = {

if (isWriteAheadLogEnabled) {

logTrace(s"Writing record: $record")

try {

writeAheadLogOption.get.write(ByteBuffer.wrap(Utils.serialize(record)),

clock.getTimeMillis())

true

} catch {

case NonFatal(e) =>

logWarning(s"Exception thrown while writing record: $record to the WriteAheadLog.", e)

false

}

} else {

true

}

}

把当前的DStream和JobGenerator的状态进行checkpoint,该方法是在generateJobs方法最后通过发送DoCheckpoint消息,来调用的。

JobGenerator:

/** Perform checkpoint for the give `time`. */

private defdoCheckpoint(time: Time, clearCheckpointDataLater: Boolean) {

if (shouldCheckpoint && (time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)) {

logInfo("Checkpointing graph for time " + time)

ssc.graph.updateCheckpointData(time)

checkpointWriter.write(new Checkpoint(ssc, time), clearCheckpointDataLater)

}

}

JobGenerator:

/** Processes all events */

private def processEvent(event: JobGeneratorEvent) {

logDebug("Got event " + event)

event match {

case GenerateJobs(time) => generateJobs(time)

case ClearMetadata(time) => clearMetadata(time)

case DoCheckpoint(time, clearCheckpointDataLater) =>

doCheckpoint(time, clearCheckpointDataLater)

case ClearCheckpointData(time) => clearCheckpointData(time)

}

}

JobGenerator:

/** Generate jobs and perform checkpoint for the given `time`.  */

private defgenerateJobs(time: Time) {

// Set the SparkEnv in this thread, so that job generation code can access the environment

// Example: BlockRDDs are created in this thread, and it needs to access BlockManager

// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.

SparkEnv.set(ssc.env)

Try {

jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch

graph.generateJobs(time) // generate jobs using allocated block

} match {

case Success(jobs) =>

val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)

jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))

case Failure(e) =>

jobScheduler.reportError("Error generating jobs for time " + time, e)

}

eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))

}

总结:

ReceivedBlockTracker是通过WAL方式来进行数据容错的。

DStreamGraph和JobGenerator是通过checkpoint方式来进行数据容错的。


备注:

资料来源于:DT_大数据梦工厂(Spark发行版本定制)



作者:阳光男孩spark
链接:https://www.jianshu.com/p/c1a92ea180e9


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消