为了账号安全,请及时绑定邮箱和手机立即绑定

我为什么放弃MySQL?最终选择了MongoDB

标签:
MongoDB MySQL

最近有个项目的功能模块,为了处理方便,需要操作集合类型的数据以及其他原因。考虑再三最终决定放弃使用MySQL,而选择MongoDB。

两个数据库,大家应该都不陌生。他们最大的区别就是MySQL为关系型数据库,而MongoDB为非关系型数据库。常见的关系型数据库有:MySQL、Oracle、DB2、SQL Server、Postgre SQL等,非关系型数据库有MongoDB、Redis、Memcached、HBse等等。

1、关系型数据库? 非关系型数据库?

关系型数据库可以理解为依赖一个模型来创建的数据库,比如我们使用的MySQL中的表是由横列和纵列组成的一个二维表格。关系型数据库可以通过关系模型使多个表的数据关联起来,比如我们平时说的 一对一、一对多、多对一。由于是建立在数据模型的基础上,所以我们可以通过SQL语句很方便的在多个表之间做复杂的查询操作。关系型数据库相对安全,因为直接存储在硬盘中所以突然的宕机、停电等意外不会导致数据丢失。MySQL的存储方式是由自身的引擎决定的,常用的引擎有Innodb和MyISAM。他们主要的区别就是MyISAM 不支持事务,强调的是性能,执行速度比Innodb要快,Innodb提供支持事务等高级数据库功能。

非关系型数据库即我们常说的NoSQL数据库,部署起来都比较简单,没有关系型数据库那么复杂。Mongo的存储方式为虚拟内存+持久化存储,Mongo将数据写入内存中,再由虚拟内存管理器将其持久化到硬盘中,因此写操作会比关系型数据库快很多。NOSQL的存储格式是key-value形式,可以像关系型数据库那样存储基础数据类型的数据,也可以存储集合、对象等等。NoSQL虽然性能比较高,但是并不支持事物,也不能进行联表查询,一般用于较大规模数据的存储。

2、他们的优点、缺点有哪些

关系型数据库发展了很长一段时间,拥有非常成熟的体系。所占份额也在逐渐增加。而且支持事物的操作,保证数据的一致性,可以通过SQL语句完成复杂的操作。但是使用过程中当数据量到达一定程度时,关系型数据库的效率会有明显的下降。一个复杂的查询操作,一系列的组合索引都会消耗非常多的内存空间,此时我们需要对数据库进行读写分离操作,或者将数据库结构进行拆分(水平拆分、垂直拆分)将请求压力分担在不同的库中。

垂直拆分是指将一张表拆分成多个表,表之间通过主键进行关联。
水平拆分是按照某种规则拆分成多个表,比如通过用户角色进行拆分
读写分离:所谓读写分离就是讲读操作(查询数据)和写操作(插入&更新)指向不同的数据库节点,他们中间通过某种机制实现数据的同步,如binlog。实际的应用中大部分压力还是来自读操作,所以主要是一主多从的架构。

非关系型数据库发展的这几年,深受人们的喜爱。免费开源、成本低、部署简单、非结构化存储等等明显的优势。而且它对海量数据处理能力非常强,内存级数据库,查询速度也非常快。存储的数据格式比较丰富,易于扩展,虽然不能使用sql进行复杂的查询,但是MongoDB支持JavaScript,所以可以通过js脚本进行复杂的数据库管理操作。关于NoSQL的缺点个人感觉目前就是不支持事物了吧,其他方面那都不是事儿。

3、什么时候用mongo

Mongo是用c++编写的,支持多种语言如:Java、Python、Ruby、PHP、C++、C# 等,有时候针对不同的业务需求,选择Mongo能够避免浪费很多不必要的资源

日志系统

系统运行过程中产生的日志信息,一般种类较多、范围较大、内容也比较杂乱。通过MongoDB可以将这些杂乱的日志进行收集管理。不仅方便了管理,查找或者导出也会变得非常容易

地理位置存储

MongoDB支持地理位置、二维空间索引,可以存储经纬度,因此可以很快的计算出两点之间的距离,等位置信息。如查询附近的人、或者订餐系统、配送系统等

数据规模增长很快

前面提到过关系型数据库数据量过大时,需要进行分库分表,这样真正操作起来可能会比较麻烦。如果选择mongo进行分库分表操作时,就会变得很简单。

保证高可用的环境

Mongo本身就拥有高可用及分区的解决方案,设置主从服务器非常方便,除此之外Mongo还可以快速并且安全的实现故障节点的转移。

文件存储需求

GridFS是MongoDB规范,用于存储和检索图片、音频、视频等大文件。GridFS虽然是文件存储的一种方式,可以存储超过16M的文件。但是它本身又是存储在MongoDB集合中的

其他场景

如游戏开发中我们可以通过MongoDB存储用户信息、装备、积分等,除此之外物流系统、社交系统、甚至物联网系统,Mongo都能提供完美的数据存储服务。

4.MySQL、MongoDB简单的性能测试

关于两个数据的性能,最有力的的说话还是通过实践来进行测试,网上看到一组测试数据,分享给大家。

测试环境:Windows 10、内存8G、CPU i5 3.30GHZ。均无索引

测试语言:Python

链接工具:pymysql、pymongo

MySQL && Mongo 测试数据统计

 提交次数单次提交个数MySQL运行时间(s)Mongo运行时间(s)数据量
110001000039121622.020
2100100301.611000万
31001005.771.600
410252.351.560
510257.421.601000万
6100001298.075.290
7100001496.185.291000万

原文出处:https://www.cnblogs.com/wyl-0120/p/10146895.html  

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 1
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消