首先简单解释一下什么是state(状态)管理?我们以wordcount为例。每个batchInterval会计算当前batch的单词计数,那如果需要计算从流开始到目前为止的单词出现的次数,该如计算呢?SparkStreaming提供了两种方法:updateStateByKey和mapWithState 。mapWithState 是1.6版本新增功能,目前属于实验阶段。mapWithState具官方说性能较updateStateByKey提升10倍。那么我们来看看他们到底是如何实现的。
一、updateStateByKey 解析
1.1 updateStateByKey 的使用实例
首先看一个updateStateByKey函数使用的例子:
object UpdateStateByKeyDemo { def main(args: Array[String]) { val conf = new SparkConf().setAppName("UpdateStateByKeyDemo") val ssc = new StreamingContext(conf,Seconds(20)) //要使用updateStateByKey方法,必须设置Checkpoint。 ssc.checkpoint("/checkpoint/") val socketLines = ssc.socketTextStream("localhost",9999) socketLines.flatMap(_.split(",")).map(word=>(word,1)) .updateStateByKey( (currValues:Seq[Int],preValue:Option[Int]) =>{ val currValue = currValues.sum//将目前值相加 Some(currValue + preValue.getOrElse(0))//目前值的和加上历史值 }).print() ssc.start() ssc.awaitTermination() ssc.stop() } }
代码很简单,关键地方写了详细的注释。
1.2 updateStateByKey 方法源码分析
我们知道map返回的是MappedDStream,而MappedDStream并没有updateStateByKey方法,并且它的父类DStream中也没有该方法。但是DStream的伴生对象中有一个隐式转换函数
implicit def toPairDStreamFunctions[K, V](stream: DStream[(K, V)]) (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null): PairDStreamFunctions[K, V] = { new PairDStreamFunctions[K, V](stream) } PairDStreamFunction 中updateStateByKey的源码如下: def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S] ): DStream[(K, S)] = ssc.withScope { updateStateByKey(updateFunc, defaultPartitioner()) }
其中updateFunc就要传入的参数,他是一个函数,
Seq[V]表示当前key对应的所有值,Option[S] 是当前key的历史状态,返回的是新的状态。
最终会调用下面的方法:
def updateStateByKey[S: ClassTag]( updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)], partitioner: Partitioner, rememberPartitioner: Boolean ): DStream[(K, S)] = ssc.withScope { new StateDStream(self, ssc.sc.clean(updateFunc), partitioner, rememberPartitioner, None) }
在这里面new出了一个StateDStream对象。在其compute方法中,会先获取上一个batch计算出的RDD(包含了至程序开始到上一个batch单词的累计计数),然后在获取本次batch中StateDStream的父类计算出的RDD(本次batch的单词计数)分别是prevStateRDD和parentRDD,然后在调用 computeUsingPreviousRDD 方法:
private [this] def computeUsingPreviousRDD ( parentRDD: RDD[(K, V)], prevStateRDD: RDD[(K, S)]) = { // Define the function for the mapPartition operation on cogrouped RDD; // first map the cogrouped tuple to tuples of required type, // and then apply the update function val updateFuncLocal = updateFunc val finalFunc = (iterator: Iterator[(K, (Iterable[V], Iterable[S]))]) => { val i = iterator.map { t => val itr = t._2._2.iterator val headOption = if (itr.hasNext) Some(itr.next()) else None (t._1, t._2._1.toSeq, headOption) } updateFuncLocal(i) } val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner) val stateRDD = cogroupedRDD.mapPartitions(finalFunc, preservePartitioning) Some(stateRDD) }
两个RDD进行cogroup然后应用updateStateByKey传入的函数。cogroup的性能是比较低下的。
二、mapWithState方法解析
2.1 mapWithState方法使用实例:
object StatefulNetworkWordCount { def main(args: Array[String]) { if (args.length < 2) { System.err.println("Usage: StatefulNetworkWordCount <hostname> <port>") System.exit(1) } StreamingExamples.setStreamingLogLevels() val sparkConf = new SparkConf().setAppName("StatefulNetworkWordCount") // Create the context with a 1 second batch size val ssc = new StreamingContext(sparkConf, Seconds(1)) ssc.checkpoint(".") // Initial state RDD for mapWithState operation val initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1))) // Create a ReceiverInputDStream on target ip:port and count the // words in input stream of \n delimited test (eg. generated by 'nc') val lines = ssc.socketTextStream(args(0), args(1).toInt) val words = lines.flatMap(_.split(" ")) val wordDstream = words.map(x => (x, 1)) // Update the cumulative count using mapWithState // This will give a DStream made of state (which is the cumulative count of the words) val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => { val sum = one.getOrElse(0) + state.getOption.getOrElse(0) val output = (word, sum) state.update(sum) output } val stateDstream = wordDstream.mapWithState( StateSpec.function(mappingFunc).initialState(initialRDD)) stateDstream.print() ssc.start() ssc.awaitTermination() } }
mapWithState接收的参数是一个StateSpec对象。在StateSpec中封装了状态管理的函数
mapWithState函数中创建了MapWithStateDStreamImpl对象
def mapWithState[StateType: ClassTag, MappedType: ClassTag]( spec: StateSpec[K, V, StateType, MappedType] ): MapWithStateDStream[K, V, StateType, MappedType] = { new MapWithStateDStreamImpl[K, V, StateType, MappedType]( self, spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]] ) }
MapWithStateDStreamImpl 中创建了一个InternalMapWithStateDStream类型对象internalStream,在MapWithStateDStreamImpl的compute方法中调用了internalStream的getOrCompute方法。
/** Internal implementation of the [[MapWithStateDStream]] */private[streaming] class MapWithStateDStreamImpl[ KeyType: ClassTag, ValueType: ClassTag, StateType: ClassTag, MappedType: ClassTag]( dataStream: DStream[(KeyType, ValueType)], spec: StateSpecImpl[KeyType, ValueType, StateType, MappedType]) extends MapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream.context) { private val internalStream = new InternalMapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream, spec) override def slideDuration: Duration = internalStream.slideDuration override def dependencies: List[DStream[_]] = List(internalStream) override def compute(validTime: Time): Option[RDD[MappedType]] = { internalStream.getOrCompute(validTime).map { _.flatMap[MappedType] { _.mappedData } } }
InternalMapWithStateDStream中没有getOrCompute方法,这里调用的是其父类 DStream 的getOrCpmpute方法,该方法中最终会调用InternalMapWithStateDStream的Compute方法:
/** Method that generates a RDD for the given time */ override def compute(validTime: Time): Option[RDD[MapWithStateRDDRecord[K, S, E]]] = { // Get the previous state or create a new empty state RDD val prevStateRDD = getOrCompute(validTime - slideDuration) match { case Some(rdd) => if (rdd.partitioner != Some(partitioner)) { // If the RDD is not partitioned the right way, let us repartition it using the // partition index as the key. This is to ensure that state RDD is always partitioned // before creating another state RDD using it MapWithStateRDD.createFromRDD[K, V, S, E]( rdd.flatMap { _.stateMap.getAll() }, partitioner, validTime) } else { rdd } case None => MapWithStateRDD.createFromPairRDD[K, V, S, E]( spec.getInitialStateRDD().getOrElse(new EmptyRDD[(K, S)](ssc.sparkContext)), partitioner, validTime ) } // Compute the new state RDD with previous state RDD and partitioned data RDD // Even if there is no data RDD, use an empty one to create a new state RDD val dataRDD = parent.getOrCompute(validTime).getOrElse { context.sparkContext.emptyRDD[(K, V)] } val partitionedDataRDD = dataRDD.partitionBy(partitioner) val timeoutThresholdTime = spec.getTimeoutInterval().map { interval => (validTime - interval).milliseconds } Some(new MapWithStateRDD( prevStateRDD , partitionedDataRDD , mappingFunction , validTime, timeoutThresholdTime)) }
根据给定的时间生成一个MapWithStateRDD,首先获取了先前状态的RDD:preStateRDD和当前时间的RDD:dataRDD,然后对dataRDD基于先前状态RDD的分区器进行重新分区获取partitionedDataRDD。最后将preStateRDD,partitionedDataRDD和用户定义的函数mappingFunction传给新生成的MapWithStateRDD对象返回。
下面看一下MapWithStateRDD的compute方法:
override def compute( partition: Partition, context: TaskContext): Iterator[MapWithStateRDDRecord[K, S, E]] = { val stateRDDPartition = partition.asInstanceOf[MapWithStateRDDPartition] val prevStateRDDIterator = prevStateRDD.iterator( stateRDDPartition.previousSessionRDDPartition, context) val dataIterator = partitionedDataRDD.iterator( stateRDDPartition.partitionedDataRDDPartition, context) //prevRecord 代表一个分区的数据 val prevRecord = if (prevStateRDDIterator.hasNext) Some(prevStateRDDIterator.next()) else None val newRecord = MapWithStateRDDRecord.updateRecordWithData( prevRecord, dataIterator, mappingFunction, batchTime, timeoutThresholdTime, removeTimedoutData = doFullScan // remove timedout data only when full scan is enabled ) Iterator(newRecord) }
MapWithStateRDDRecord 对应MapWithStateRDD 的一个分区:
private[streaming] case class MapWithStateRDDRecord[K, S, E]( var stateMap: StateMap[K, S], var mappedData: Seq[E])
其中stateMap存储了key的状态,mappedData存储了mapping function函数的返回值
看一下MapWithStateRDDRecord的
updateRecordWithData方法
def updateRecordWithData[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag]( prevRecord: Option[MapWithStateRDDRecord[K, S, E]], dataIterator: Iterator[(K, V)], mappingFunction: (Time, K, Option[V], State[S]) => Option[E], batchTime: Time, timeoutThresholdTime: Option[Long], removeTimedoutData: Boolean ): MapWithStateRDDRecord[K, S, E] = {// 创建一个新的 state map 从过去的Recoord中复制 (如果存在) 否则创建一下空的StateMap对象 val newStateMap = prevRecord.map { _.stateMap.copy() }. getOrElse { new EmptyStateMap[K, S]() } val mappedData = new ArrayBuffer[E] //状态 val wrappedState = new StateImpl[S]() // Call the mapping function on each record in the data iterator, and accordingly // update the states touched, and collect the data returned by the mapping function dataIterator.foreach { case (key, value) => //获取key对应的状态 wrappedState.wrap(newStateMap.get(key)) //调用mappingFunction获取返回值 val returned = mappingFunction(batchTime, key, Some(value), wrappedState) //维护newStateMap的值 if (wrappedState.isRemoved) { newStateMap.remove(key) } else if (wrappedState.isUpdated || (wrappedState.exists && timeoutThresholdTime.isDefined)) { newStateMap.put(key, wrappedState.get(), batchTime.milliseconds) } mappedData ++= returned } // Get the timed out state records, call the mapping function on each and collect the // data returned if (removeTimedoutData && timeoutThresholdTime.isDefined) { newStateMap.getByTime(timeoutThresholdTime.get).foreach { case (key, state, _) => wrappedState.wrapTimingOutState(state) val returned = mappingFunction(batchTime, key, None, wrappedState) mappedData ++= returned newStateMap.remove(key) } } MapWithStateRDDRecord(newStateMap, mappedData) }
最终返回MapWithStateRDDRecord
对象交个MapWithStateRDD的compute函数,MapWithStateRDD的compute函数将其封装成Iterator返回。
作者:飞帅记忆
链接:https://www.jianshu.com/p/261636f397b8
共同学习,写下你的评论
评论加载中...
作者其他优质文章