为了账号安全,请及时绑定邮箱和手机立即绑定

初识梯度下降法及小试牛刀

标签:
Python

        随着深度学习的火热,梯度下降法也经常被人所提起。做为一种最常见的求解无约束问题最优化方法,它在ML和DL模型求解的过程中扮演着相当重要的角色,在接触和学习机器学习的过程中,看了很多教程,书籍,都有和梯度下降相关的内容,但看了那么多,始终不如自己动手试一试来的印象深刻,在此记录一下。

        梯度下降法(gradient descent),是在求解无约束最优化问题过程中的一种最常用的方法。假设 f(x)是Rn上具有一阶连续偏导的函数,要求解的无约束最优化问题是:

webp

无约束最优化问题

webp

梯度下降法

        梯度下降算法思想非常简单,导数的负方向就是函数值下降的方向。对于一个一元二次函数来说,当某一点导数为正数时候,曲线是上升的,其反方向就是函数值下降的方向。当某一点导数为负数时候,曲线是下降的,其正方向就是函数值下降的方向。稍微难以理解的是第三步,第三步中λ就是我们平常说的学习率,既求一个合适的λ使得函数值下降最大。其他的都非常易懂,接下来就用梯度下降法解决一个非常简单的问题,求解一个一元二次方程的最小值。

webp

求解一元二次函数最小值

代码实现

1. 首先导入库

webp

2. 生成数据并绘制

webp

生成数据并绘制

3. 定义函数求解f(x)及其导数g(x)

webp

f(x)及g(x)

4. 定义学习率,epsilon,最大迭代次数

webp

学习率,epsilon,最大迭代次数

5.  梯度下降代码,初始化一个x0 = 5, 使用列表learn_x 记录每次学习到的x。

webp

梯度下降

6. 绘制学习过程

webp

学习过程

        以上就是关于使用梯度下降法解决一个非常入门非常简单的例子,对于没有了解过梯度下降法的朋友,算是能有个大概了解,但实际用到的梯度下降法,通常情况梯度是一个向量,而且求偏导的计算远比求一元二次函数的导数要复杂的多。附上 ipynb链接:链接: 



作者:icetong_k
链接:https://www.jianshu.com/p/886a9de30f23


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消