为了账号安全,请及时绑定邮箱和手机立即绑定

spark-2.2.0安装和部署——集群学习日记

标签:
Spark

前言

在安装后hadoop之后,接下来需要安装的就是Spark。

scala-2.11.7下载与安装

具体步骤参见上一篇博文


Spark下载

为了方便,我直接是进入到了/usr/local文件夹下面进行下载spark-2.2.0

wget https://d3kbcqa49mib13.cloudfront.net/spark-2.2.0-bin-hadoop2.7.tgz

Spark安装之前的准备

文件的解压与改名

tar -zxvf spark-2.2.0-bin-hadoop2.7.tgz
rm -rf spark-2.2.0-bin-hadoop2.7.tgz

为了我后面方便配置spark,在这里我把文件夹的名字给改了

mv spark-2.2.0-bin-hadoop2.7 spark-2.2.0

配置环境变量

vi /etc/profile

在最尾巴加入

export SPARK_HOME=/usr/local/spark-2.2.0export PATH=$PATH:$SPARK_HOME/bin

webp


配置Spark环境

打开spark-2.2.0文件夹

cd spark-2.2.0

此处需要配置的文件为两个
spark-env.shslaves

webp

首先我们把缓存的文件spark-env.sh.template改为spark识别的文件spark-env.sh

cp conf/spark-env.sh.template conf /spark-env.sh

修改spark-env.sh文件

vi conf/spark-env.sh

在最尾巴加入

export JAVA_HOME=/usr/java/jdk1.8.0_141export SCALA_HOME=/usr/scala-2.11.7export HADOOP_HOME=/usr/local/hadoop-2.7.2export HADOOP_CONF_DIR=/usr/local/hadoop-2.7.2/etc/hadoopexport SPARK_MASTER_IP=SparkMasterexport SPARK_WORKER_MEMORY=4gexport SPARK_WORKER_CORES=2export SPARK_WORKER_INSTANCES=1

变量说明

  • JAVA_HOME:Java安装目录

  • SCALA_HOME:Scala安装目录

  • HADOOP_HOME:hadoop安装目录

  • HADOOP_CONF_DIR:hadoop集群的配置文件的目录

  • SPARK_MASTER_IP:spark集群的Master节点的ip地址

  • SPARK_WORKER_MEMORY:每个worker节点能够最大分配给exectors的内存大小

  • SPARK_WORKER_CORES:每个worker节点所占有的CPU核数目

  • SPARK_WORKER_INSTANCES:每台机器上开启的worker节点的数目

webp

修改slaves文件

vi conf/slaves

在最后面修成为

SparkWorker1
SparkWorker2

webp

同步SparkWorker1SparkWorker2的配置

在此我们使用rsync命令

rsync -av /usr/local/spark-2.2.0/ SparkWorker1:/usr/local/spark-2.2.0/
rsync -av /usr/local/spark-2.2.0/ SparkWorker2:/usr/local/spark-2.2.0/

启动Spark集群

因为我们只需要使用hadoopHDFS文件系统,所以我们并不用把hadoop全部功能都启动。

启动hadoopHDFS文件系统

start-dfs.sh

但是在此会遇到一个情况,就是使用start-dfs.sh,启动之后,在SparkMaster已经启动了namenode,但在SparkWorker1SparkWorker2都没有启动了datanode,这里的原因是:datanodeclusterIDnamenodeclusterID不匹配。是因为SparkMaster多次使用了hadoop namenode -format格式化了。

==解决的办法:==

SparkMaster使用

cat /usr/local/hadoop-2.7.2/hdfs/name/current/VERSION

查看clusterID,并将其复制。

5acb3c8700013dc501600160.jpg

SparkWorker1SparkWorker2上使用

vi /usr/local/hadoop-2.7.2/hdfs/name/current/VERSION

将里面的clusterID,更改成为SparkMasterVERSION里面的clusterID

webp

做了以上两步之后,便可重新使用start-dfs.sh开启HDFS文件系统。

webp

启动之后使用jps命令可以查看到SparkMaster已经启动了namenodeSparkWorker1SparkWorker2都启动了datanode,说明hadoopHDFS文件系统已经启动了。

webp

webp

webp

启动Spark

因为hadoop/sbin以及spark/sbin均配置到了系统的环境中,它们同一个文件夹下存在同样的start-all.sh文件。最好是打开spark-2.2.0,在文件夹下面打开该文件。

./sbin/start-all.sh

webp

成功打开之后使用jpsSparkMasterparkWorker1SparkWorker2节点上分别可以看到新开启的MasterWorker进程。

webp

webp

webp

成功打开Spark集群之后可以进入SparkWebUI界面,可以通过

SparkMaster_IP:8080

访问,可见有两个正在运行的Worker节点。

webp

打开Spark-shell

使用

spark-shell

webp

便可打开Sparkshell

同时,因为shell在运行,我们也可以通过

SparkMaster_IP:4040

访问WebUI查看当前执行的任务。

webp


结言

到此我们的Spark集群就搭建完毕了。搭建spark集群原来知识网络是挺庞大的,涉及到Linux基本操作,设计到ssh,设计到hadoop、Scala以及真正的Spark。在此也遇到不少问题,通过翻阅书籍以及查看别人的blog得到了解决。在此感谢分享知识的人。

参见 王家林/王雁军/王家虎的《Spark 核心源码分析与开发实战》

文章出自kwongtai'blog,转载请标明出处!



作者:Kwongtai
链接:https://www.jianshu.com/p/f606723aa2fb


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消