前言
在spark应用程序中,常常会遇到运算量很大经过很复杂的 Transformation才能得到的RDD即Lineage链较长、宽依赖的RDD,此时我们可以考虑将这个RDD持久化。
cache也是可以持久化到磁盘,只不过是直接将partition的输出数据写到磁盘,而checkpoint是在逻辑job完成后,若有需要checkpoint的RDD,再单独启动一个job去完成checkpoint,这样该RDD就被计算了两次,所以建议在有checkpoint的时候先将该RDD cache到内存,到时候直接写到磁盘就行了。
checkpoint的实现
需要使用checkpoint都需要通过sparkcontext的setCheckpointDir方法设置一个目录以存checkpoint的各种信息数据,下面我们来看看该方法:
def setCheckpointDir(directory: String) { if (!isLocal && Utils.nonLocalPaths(directory).isEmpty) { logWarning("Spark is not running in local mode, therefore the checkpoint directory " + s"must not be on the local filesystem. Directory '$directory' " + "appears to be on the local filesystem.") } checkpointDir = Option(directory).map { dir => val path = new Path(dir, UUID.randomUUID().toString) val fs = path.getFileSystem(hadoopConfiguration) fs.mkdirs(path) fs.getFileStatus(path).getPath.toString } }
在非local模式下,directory必须是HDFS的目录;在该目录下创建一个以UUID生成的一个唯一的目录名的目录。
通过rdd.checkpoint()即可checkpoint此RDD
def checkpoint(): Unit = RDDCheckpointData.synchronized { if (context.checkpointDir.isEmpty) { throw new SparkException("Checkpoint directory has not been set in the SparkContext") } else if (checkpointData.isEmpty) { checkpointData = Some(new ReliableRDDCheckpointData(this)) } }
先判断是否设置了checkpointDir,再判断checkpointData.isEmpty是否成立,checkpointData的定义是这样的:
private[spark] var checkpointData: Option[RDDCheckpointData[T]] = None
RDDCheckpointData和RDD一一对应,保存着和checkpoint相关的信息。这里通过new ReliableRDDCheckpointData(this)实例化了checkpointData ,ReliableRDDCheckpointData是其子类,这里相当于是checkpoint的一个标记,并没有真正执行checkpoint。
什么时候checkpoint
在有action动作时,会触发sparkcontext对runJob的调用:
def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], resultHandler: (Int, U) => Unit): Unit = { if (stopped.get()) { throw new IllegalStateException("SparkContext has been shutdown") } val callSite = getCallSite val cleanedFunc = clean(func) logInfo("Starting job: " + callSite.shortForm) if (conf.getBoolean("spark.logLineage", false)) { logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString) } dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get) progressBar.foreach(_.finishAll()) rdd.doCheckpoint() }
我们可以看到在执行完job后会执行 rdd.doCheckpoint(),这里就是对前面标记了的RDD的checkpoint,我们继续看这个方法:
private[spark] def doCheckpoint(): Unit = { RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) { if (!doCheckpointCalled) { doCheckpointCalled = true if (checkpointData.isDefined) { if (checkpointAllMarkedAncestors) { dependencies.foreach(_.rdd.doCheckpoint()) } checkpointData.get.checkpoint() } else { dependencies.foreach(_.rdd.doCheckpoint()) } } } }
先判断是否已经被处理过checkpoint,没有才执行,并将doCheckpointCalled 设为true,因为前面已经初始化过了checkpointData,所以checkpointData.isDefined也满足,若想要把checkpointData定义过的RDD的parents也进行checkpoint的话,那么我们需要先对parents checkpoint。因为,如果RDD把自己checkpoint了,那么它就将lineage中它的parents给切除了。继续跟进checkpointData.get.checkpoint()
final def checkpoint(): Unit = { // Guard against multiple threads checkpointing the same RDD by // atomically flipping the state of this RDDCheckpointData RDDCheckpointData.synchronized { if (cpState == Initialized) { cpState = CheckpointingInProgress } else { return } } val newRDD = doCheckpoint() // Update our state and truncate the RDD lineage RDDCheckpointData.synchronized { cpRDD = Some(newRDD) cpState = Checkpointed rdd.markCheckpointed() } }
先将checkpoint的状态改为CheckpointingInProgress,再执行doCheckpoint,返回一个newRDD,看doCheckpoint做了什么:
protected override def doCheckpoint(): CheckpointRDD[T] = { val newRDD = ReliableCheckpointRDD.writeRDDToCheckpointDirectory(rdd, cpDir) if (rdd.conf.getBoolean("spark.cleaner.referenceTracking.cleanCheckpoints", false)) { rdd.context.cleaner.foreach { cleaner => cleaner.registerRDDCheckpointDataForCleanup(newRDD, rdd.id) } } logInfo(s"Done checkpointing RDD ${rdd.id} to $cpDir, new parent is RDD ${newRDD.id}") newRDD }
ReliableCheckpointRDD.writeRDDToCheckpointDirectory(rdd, cpDir),将一个RDD写入到多个checkpoint文件,并返回一个ReliableCheckpointRDD来代表这个RDD
def writeRDDToCheckpointDirectory[T: ClassTag]( originalRDD: RDD[T], checkpointDir: String, blockSize: Int = -1): ReliableCheckpointRDD[T] = { val sc = originalRDD.sparkContext // Create the output path for the checkpoint val checkpointDirPath = new Path(checkpointDir) val fs = checkpointDirPath.getFileSystem(sc.hadoopConfiguration) if (!fs.mkdirs(checkpointDirPath)) { throw new SparkException(s"Failed to create checkpoint path $checkpointDirPath") } // Save to file, and reload it as an RDD val broadcastedConf = sc.broadcast( new SerializableConfiguration(sc.hadoopConfiguration)) // TODO: This is expensive because it computes the RDD again unnecessarily (SPARK-8582) sc.runJob(originalRDD, writePartitionToCheckpointFile[T](checkpointDirPath.toString, broadcastedConf) _) if (originalRDD.partitioner.nonEmpty) { writePartitionerToCheckpointDir(sc, originalRDD.partitioner.get, checkpointDirPath) } val newRDD = new ReliableCheckpointRDD[T]( sc, checkpointDirPath.toString, originalRDD.partitioner) if (newRDD.partitions.length != originalRDD.partitions.length) { throw new SparkException( s"Checkpoint RDD $newRDD(${newRDD.partitions.length}) has different " + s"number of partitions from original RDD $originalRDD(${originalRDD.partitions.length})") } newRDD }
获取一些配置信息广播输出等操作,然后启动一个Job去写Checkpint文件,主要由ReliableCheckpointRDD.writeCheckpointFile来实现写操作,写完checkpoint后new一个ReliableCheckpointRDD实例返回,看看具体的writePartitionToCheckpointFile实现:
def writePartitionToCheckpointFile[T: ClassTag]( path: String, broadcastedConf: Broadcast[SerializableConfiguration], blockSize: Int = -1)(ctx: TaskContext, iterator: Iterator[T]) { val env = SparkEnv.get val outputDir = new Path(path) val fs = outputDir.getFileSystem(broadcastedConf.value.value) val finalOutputName = ReliableCheckpointRDD.checkpointFileName(ctx.partitionId()) val finalOutputPath = new Path(outputDir, finalOutputName) val tempOutputPath = new Path(outputDir, s".$finalOutputName-attempt-${ctx.attemptNumber()}") if (fs.exists(tempOutputPath)) { throw new IOException(s"Checkpoint failed: temporary path $tempOutputPath already exists") } val bufferSize = env.conf.getInt("spark.buffer.size", 65536) val fileOutputStream = if (blockSize < 0) { fs.create(tempOutputPath, false, bufferSize) } else { // This is mainly for testing purpose fs.create(tempOutputPath, false, bufferSize, fs.getDefaultReplication(fs.getWorkingDirectory), blockSize) } val serializer = env.serializer.newInstance() val serializeStream = serializer.serializeStream(fileOutputStream) Utils.tryWithSafeFinally { serializeStream.writeAll(iterator) } { serializeStream.close() } if (!fs.rename(tempOutputPath, finalOutputPath)) { if (!fs.exists(finalOutputPath)) { logInfo(s"Deleting tempOutputPath $tempOutputPath") fs.delete(tempOutputPath, false) throw new IOException("Checkpoint failed: failed to save output of task: " + s"${ctx.attemptNumber()} and final output path does not exist: $finalOutputPath") } else { // Some other copy of this task must've finished before us and renamed it logInfo(s"Final output path $finalOutputPath already exists; not overwriting it") if (!fs.delete(tempOutputPath, false)) { logWarning(s"Error deleting ${tempOutputPath}") } } } }
这里的代码就是普通的对HDFS写文件的操作,将一个RDD partition的数据写到checkpoint目录下。
doCheckpoint()操作已经完成,返回了一个new RDD:ReliableCheckpointRDD引用给cpRDD,接着标记checkpoint的状态为Checkpointed,rdd.markCheckpointed()干了什么呢?
private[spark] def markCheckpointed(): Unit = { clearDependencies() partitions_ = null deps = null // Forget the constructor argument for dependencies too }
最后再清除RDD的所有依赖。
写checkpoint总结
Initialized
marked for checkpointing
checkpointing in progress
checkpointed
什么时候读checkpoint
在需要读取一个partition的数据时,会通过rdd.iterator() 去计算该 rdd 的 partition 的,我们来看RDD的iterator()实现:
final def iterator(split: Partition, context: TaskContext): Iterator[T] = { if (storageLevel != StorageLevel.NONE) { getOrCompute(split, context) } else { computeOrReadCheckpoint(split, context) } }
在cache中没有读到数据时再判断该RDD是否被checkpoint过,isCheckpointedAndMaterialized就是在checkpoint成功时的一个状态标记:cpState = Checkpointed。
private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] = { if (isCheckpointedAndMaterialized) { firstParent[T].iterator(split, context) } else { compute(split, context) } }
当该RDD被成功checkpoint了,直接使用parent rdd 的 iterator() 也就是 CheckpointRDD.iterator(),否则直接调用该RDD的compute方法。
final def dependencies: Seq[Dependency[_]] = { checkpointRDD.map(r => List(new OneToOneDependency(r))).getOrElse { if (dependencies_ == null) { dependencies_ = getDependencies } dependencies_ } }
获取RDD的依赖时,会先尝试从checkpointRDD中获取依赖,若成功则返回被OneToOneDependency包装过的ReliableCheckpointRDD对象,否则获取真正的依赖。
作者:BIGUFO
链接:https://www.jianshu.com/p/4e636e575b8a
共同学习,写下你的评论
评论加载中...
作者其他优质文章