问题描述
运行spark sql on yarn的时候发现yarn client模式跑的好好的程序,换成yarn cluster模式就不正确了,原因是hive-site.xml这文件没有被加载到Driver(也就是这时候的ApplicationMaster)的classpath里面去,貌似是直接连接了一个默认的am-container本地metastore。
看下官方文档 2.1.2 - 2.1.1 - 2.0.2 貌似都是同样一句话将hive-site.xml放入conf/
下就行了。我也真真的造作了啊。。
Configuration of Hive is done by placing your hive-site.xml, core-site.xml (for security configuration), and hdfs-site.xml (for HDFS configuration) file in conf/.
测试程序
如下,简单到羞涩
import org.apache.spark.sql.SparkSession object ShowHiveTables { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .appName("Show Hive Tables") .enableHiveSupport() .getOrCreate() spark.sql("show tables").show() spark.stop() } }
扒下spark源码
$SPARK_HOME/conf下的.xml文件果然是不会上传的 基于这个commit: b04eefae49b96e2ef5a8d75334db29ef4e19ce58给出org.apache.spark.deploy.yarn.Client
/** * Create an archive with the config files for distribution. * * These will be used by AM and executors. The files are zipped and added to the job as an * archive, so that YARN will explode it when distributing to AM and executors. This directory * is then added to the classpath of AM and executor process, just to make sure that everybody * is using the same default config. * * This follows the order of precedence set by the startup scripts, in which HADOOP_CONF_DIR * shows up in the classpath before YARN_CONF_DIR. * * Currently this makes a shallow copy of the conf directory. If there are cases where a * Hadoop config directory contains subdirectories, this code will have to be fixed. * * The archive also contains some Spark configuration. Namely, it saves the contents of * SparkConf in a file to be loaded by the AM process. */ private def createConfArchive(): File = { val hadoopConfFiles = new HashMap[String, File]() // 处理了HADOOP_CONF_DIR下的配置文件 Seq("HADOOP_CONF_DIR", "YARN_CONF_DIR").foreach { envKey => sys.env.get(envKey).foreach { path => val dir = new File(path) if (dir.isDirectory()) { val files = dir.listFiles() if (files == null) { logWarning("Failed to list files under directory " + dir) } else { files.foreach { file => if (file.isFile && !hadoopConfFiles.contains(file.getName())) { hadoopConfFiles(file.getName()) = file } } } } } } val confArchive = File.createTempFile(LOCALIZED_CONF_DIR, ".zip", new File(Utils.getLocalDir(sparkConf))) val confStream = new ZipOutputStream(new FileOutputStream(confArchive)) try { confStream.setLevel(0) // Upload $SPARK_CONF_DIR/log4j.properties file to the distributed cache to make sure that // the executors will use the latest configurations instead of the default values. This is // required when user changes log4j.properties directly to set the log configurations. If // configuration file is provided through --files then executors will be taking configurations // from --files instead of $SPARK_CONF_DIR/log4j.properties. // Also upload metrics.properties to distributed cache if exists in classpath. // If user specify this file using --files then executors will use the one // from --files instead. // 处理$SPARK_CONF_DIR下的文件,但是只有下面这两个,没有hive-site.xml for { prop <- Seq("log4j.properties", "metrics.properties") url <- Option(Utils.getContextOrSparkClassLoader.getResource(prop)) if url.getProtocol == "file" } { val file = new File(url.getPath()) confStream.putNextEntry(new ZipEntry(file.getName())) Files.copy(file, confStream) confStream.closeEntry() } // Save the Hadoop config files under a separate directory in the archive. This directory // is appended to the classpath so that the cluster-provided configuration takes precedence. confStream.putNextEntry(new ZipEntry(s"$LOCALIZED_HADOOP_CONF_DIR/")) confStream.closeEntry() hadoopConfFiles.foreach { case (name, file) => if (file.canRead()) { confStream.putNextEntry(new ZipEntry(s"$LOCALIZED_HADOOP_CONF_DIR/$name")) Files.copy(file, confStream) confStream.closeEntry() } } // Save the YARN configuration into a separate file that will be overlayed on top of the // cluster's Hadoop conf. confStream.putNextEntry(new ZipEntry(SPARK_HADOOP_CONF_FILE)) yarnConf.writeXml(confStream) confStream.closeEntry() // Save Spark configuration to a file in the archive. val props = new Properties() sparkConf.getAll.foreach { case (k, v) => props.setProperty(k, v) } // Override spark.yarn.key to point to the location in distributed cache which will be used // by AM. Option(amKeytabFileName).foreach { k => props.setProperty(KEYTAB.key, k) } confStream.putNextEntry(new ZipEntry(SPARK_CONF_FILE)) val writer = new OutputStreamWriter(confStream, StandardCharsets.UTF_8) props.store(writer, "Spark configuration.") writer.flush() confStream.closeEntry() } finally { confStream.close() } confArchive }
目测是个bug
顺手提交个代码
https://github.com/apache/spark/pull/19663
继续解决问题
--files path/to/your/hive-site.xml 放到了am container的工作目录,有效
--jars path/to/your/hive-site.xml 当成jar包上传,有效
cp path/to/your/hive-site.xml $HADOOP_CONF_DIR,看上面代码,有效
--conf spark.yarn.dist.files=path/to/your/hive-site.xml 同1,有效
--conf spark.yarn.dist.jars=path/to/your/hive-site.xml 同2,有效
测试版本在2.1.x下进行,其他版本自行验证,或者直接打上上面的patch
作者:风景不美
链接:https://www.jianshu.com/p/e1494bb236ba
共同学习,写下你的评论
评论加载中...
作者其他优质文章