为了账号安全,请及时绑定邮箱和手机立即绑定

Spark开发环境搭建

标签:
Spark

归档至github

Spark本地安装

  • Java 安装

  • Spark 安装

  • PySpark 安装

Java安装

这一部分不多赘述,配置好Java 环境变量即可。

Spark 安装

官网下载所需版本的Spark 压缩包

webp

解压至对应目录,如 C:\dev\spark1.6.3
配置环境变量


webp

这时,进入cmd 命令行,可以启动。


webp

Pyspark 安装

要求在本机已经安装好Spark。此外python 3.6 版本不兼容Spark 1.6,使用时需要注意。
新增环境变量:PYTHONPATH
值为:%SPARK_HOME%\Python;%SPARK_HOME%\python\lib\py4j-0.9-src.zip

同时,在python 的配置的Lib\site-packages 中新增pyspark.pth 文件,内容为

C:\dev\spark1.6.3\python

重启CMD ,输入pyspark 即可


webp

ubuntu 下搭建 参见 这篇说明

开发环境搭建

Scala

搭建一个maven 工程即可pom.xml 如下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.ych</groupId>
  <artifactId>ychTestSpark4S</artifactId>
  <version>1.0-SNAPSHOT</version>
  <inceptionYear>2008</inceptionYear>
    <properties>
        <spark.version>1.6.2</spark.version>
        <scala.version>2.10</scala.version>
    </properties>

  <repositories>
    <repository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </repository>
  </repositories>

  <pluginRepositories>
    <pluginRepository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </pluginRepository>
  </pluginRepositories>



  <dependencies>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-hive_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-mllib_${scala.version}</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <dependency>
      <groupId>org.apache.avro</groupId>
      <artifactId>avro</artifactId>
      <version>1.7.7</version>
    </dependency>


    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.4</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>org.specs</groupId>
      <artifactId>specs</artifactId>
      <version>1.2.5</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>com.databricks</groupId>
      <artifactId>spark-csv_2.10</artifactId>
      <version>1.0.3</version>
    </dependency>
  </dependencies>

  <build>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>${scala.version}.6</scalaVersion>
          <args>
            <arg>-target:jvm-1.5</arg>
          </args>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-eclipse-plugin</artifactId>
        <configuration>
          <downloadSources>true</downloadSources>
          <buildcommands>
            <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
          </buildcommands>
          <additionalProjectnatures>
            <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
          </additionalProjectnatures>
          <classpathContainers>
            <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
            <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
          </classpathContainers>
        </configuration>
      </plugin>
    </plugins>
  </build>
  <reporting>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
        </configuration>
      </plugin>
    </plugins>
  </reporting></project>

Java 开发环境

同Scala

python

设定好,需要使用的python 环境即可。
spyder 根据anaconda 设定的python 环境,选择对应的spyder 启动即可。
pycharm 如下配置:


webp



作者:喵_十八
链接:https://www.jianshu.com/p/5805fd0a2f27


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消