为了账号安全,请及时绑定邮箱和手机立即绑定

【Spark Core】从作业提交到任务调度完整生命周期浅析

标签:
Spark

引言

这一小节我们将就之前写的几篇博文,从提交Job,到Stage划分,到任务分发,再到任务的执行,这一完整过程做一系统的回顾。在这一过程中理清思路,明确几篇文章中涉及到的调度关系和逻辑关系。

Spark作业提交到执行过程


webp


上面这个图摘自张包峰的csdn博客,这个图很清晰的描述了作业提交执行的整个过程,略去了细节原理,给人一种清晰直观的流程概况。
通过该图结合一下我之前的博文来描述一下文章的内容和相互关系:
DAGScheduler源码浅析介绍了SparkContext通过DAGScheduler的runJob提交作业,其中通过DAGScheduler的事件队列来处理JobSubmitted事件来处理提交的Job。
DAGScheduler源码浅析2对DAGScheduler中涉及的两个重要组件进行的补充介绍。
Stage生成和Stage源码浅析介绍了将Job划分为Stage的过程,Spark根据RDD的依赖关系划分Stage,最终将其封装成taskset进行提交。
TaskScheduler源码与任务提交原理浅析1介绍了TaskScheduler和SchedulerBackend的关系。
TaskScheduler源码与任务提交原理浅析2介绍了Driver侧的SchedulerBackend是如何进行资源分配和任务调度的,最终派发给Executor去执行。
任务执行机制和Task源码浅析2介绍了Task在Executor中的执行过程。


Driver的任务提交过程

webp


1、Driver程序的代码运行到action操作,触发了SparkContext的runJob方法。
2、SparkContext调用DAGScheduler的runJob函数。
3、DAGScheduler把Job划分stage,然后把stage转化为相应的Tasks,把Tasks交给TaskScheduler。
4、通过TaskScheduler把Tasks添加到任务队列当中,交给SchedulerBackend进行资源分配和任务调度。
5、调度器给Task分配执行Executor,ExecutorBackend负责执行Task。

转载请注明作者Jason Ding及其出处



作者:JasonDing
链接:https://www.jianshu.com/p/745a55ec63e5


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消