为了账号安全,请及时绑定邮箱和手机立即绑定

6 Spark Streaming 中Job的动态生成

标签:
Spark
  1. 本文内容以以Socket数据来源为例,通过WordCount计算来跟踪Job的生成
    代码如下:

    objectNetworkWordCount {
      defmain(args:Array[String]) {        if (args.length< 2) {
          System.err.println("Usage:NetworkWordCount<hostname> <port>")
          System.exit(1)
        }
        val sparkConf= newSparkConf().setAppName("NetworkWordCount").setMaster("local[2]")
        val ssc = newStreamingContext(sparkConf,Seconds(1))
        val lines= ssc.socketTextStream(args(0),args(1).toInt,StorageLevel.MEMORY_AND_DISK_SER)
        val words= lines.flatMap(_.split(""))
        val wordCounts= words.map(x => (x,1)).reduceByKey(_+ _)
        wordCounts.print()
        ssc.start()
        ssc.awaitTermination()
      }
    }
  1. 从ssc.start()开始看,在start方法中调用了scheduler的start()方法,这里的scheduler就是
    JobScheduler,我们看start的代码

def start(): Unit = synchronized {    if (eventLoop != null) return // scheduler has already been started
    
    logDebug("Starting JobScheduler")
    eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {    override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)    override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
    }    // 启动JobScheduler的事件循环器
    eventLoop.start()    
    // attach rate controllers of input streams to receive batch completion updates
    for { inputDStream <- ssc.graph.getInputStreams
    rateController <- inputDStream.rateController
    } ssc.addStreamingListener(rateController)
    
    listenerBus.start(ssc.sparkContext)
    receiverTracker = new ReceiverTracker(ssc)
    inputInfoTracker = new InputInfoTracker(ssc)    // 启动ReceiverTracker,数据的接收逻辑从这里开始
    receiverTracker.start()    // 启动JobGenerator,job的生成从这里开始
    jobGenerator.start()
    logInfo("Started JobScheduler")
}

Spark Streaming由JobScheduler、ReceiverTracker、JobGenerator三大组件组成,其中ReceiverTracker、
JobGenerator包含在JobScheduler中。这里分别执行三大组件的start方法。

  1. 我们先看Job的生成,jobGenerator.start()方法。在JobGenerator的start方法中都做了什么,继续往下看。
    首先启动了一个EventLoop并来回调processEvent方法,那么什么时候会触发回调呢,来看一下EventLoop的内部结构

 private[spark] abstract class EventLoop\[E](name: String) extends Logging {  //线程安全的阻塞队列
  private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque\[E]()  private val stopped = new AtomicBoolean(false)  private val eventThread = new Thread(name) {    //后台线程
    setDaemon(true)

    override def run(): Unit = {      try {        while (!stopped.get) {
          val event = eventQueue.take()          try {            //回调子类的onReceive方法,就是事件的逻辑代码
            onReceive(event)
          } catch {            case NonFatal(e) => {              try {
                onError(e)
              } catch {                case NonFatal(e) => logError("Unexpected error in " + name, e)
              }
            }
          }
        }
      } catch {        case ie: InterruptedException => // exit even if eventQueue is not empty
        case NonFatal(e) => logError("Unexpected error in " + name, e)
      }
    }
  }

  def start(): Unit = {    if (stopped.get) {      throw new IllegalStateException(name + " has already been stopped")
    }    // Call onStart before starting the event thread to make sure it happens before onReceive
    onStart()    // 启动事件循环器
    eventThread.start()
  }

  def stop(): Unit = {    // stopped.compareAndSet(false, true) 判断是否为false,同时赋值为true
    if (stopped.compareAndSet(false, true)) {
     eventThread.interrupt()
      var onStopCalled = false
      try {
        eventThread.join()        // Call onStop after the event thread exits to make sure onReceive happens before onStop
        onStopCalled = true
        onStop()
      } catch {        case ie: InterruptedException =>
          Thread.currentThread().interrupt()          if (!onStopCalled) {            // ie is thrown from `eventThread.join()`. Otherwise, we should not call `onStop` since
            // it's already called.
            onStop()
          }
      }
    } else {      // Keep quiet to allow calling `stop` multiple times.
    }
  }

  def post(event: E): Unit = {
    eventQueue.put(event)
  }

  def isActive: Boolean = eventThread.isAlive  protected def onStart(): Unit = {}  protected def onStop(): Unit = {}  protected def onReceive(event: E): Unit  protected def onError(e: Throwable): Unit

 }

在EventLoop内部其实是维护了一个队列,开辟了一条后台线程来回调实现类的onReceive方法。
那么是什么时候把事件放入EventLoop的队列中呢,就要找EventLoop的post方法了。在JobGenerator实例化的时
候创建了一个RecurringTimer,代码如下:

 private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,  // 回调 eventLoop.post(GenerateJobs(new Time(longTime)))将GenerateJobs事件放入事件循环器
  longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")

RecurringTimer就是一个定时器,看一下他的构造参数和内部代码,
* @param clock 时钟
* @param period 间歇时间
* @param callback 回调方法
* @param name 定时器的名称
很清楚的知道根据用户传入的时间间隔,周期性的回调callback方法。Callback就是前面看到的

longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")

将GenerateJobs事件提交到EventLoop的队列中,此时RecurringTimer还没有执行。
回到JobGenerator中的start方法向下看,因为是第一次运行,所以调用了startFirstTime方法。
在startFirstTime方法中,有一行关键代码timer.start(startTime.milliseconds),终于看到了定时器的启动

  1. 从定时器的start方法开始往回看,周期性的回调eventLoop.post方法将GenerateJobs事件发送到EvenLoop的队列,然后回调rocessEvent方法,看generateJobs(time)。
    generateJobs代码如下

private def generateJobs(time: Time) {  // Set the SparkEnv in this thread, so that job generation code can access the environment
  // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
  // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
  SparkEnv.set(ssc.env)  Try {
    jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
    graph.generateJobs(time) // generate jobs using allocated block
  } match {    case Success(jobs) =>      // 获取元数据信息
      val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)      // 提交jobSet
      jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))    case Failure(e) =>
      jobScheduler.reportError("Error generating jobs for time " + time, e)
  }
  eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
进入graph.generateJobs(time) ,调用每一个outputStream的generateJob方法,generateJob代码如下private[streaming] def generateJob(time: Time): Option[Job] = {
  getOrCompute(time) match {    case Some(rdd) => {      // jobRunc中包装了runJob的方法
      val jobFunc = () => {
        val emptyFunc = { (iterator: Iterator[T]) => {} }
        context.sparkContext.runJob(rdd, emptyFunc)
      }
      Some(new Job(time, jobFunc))
    }    case None => None
  }
}

getOrCompute返回一个RDD,RDD的生成以后再说,定义了一个函数jobFunc,可以看到函数的作用是提交job,
把jobFunc封装到Job对象然后返回。

  1. 返回的是多个job,jobs生成成功后提交JobSet,代码如下
    jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
    然后分别提交每一个job,把job包装到JobHandler(Runnable子类)交给线程池运行,执行JobHandler的run
    方法,调用job.run(),在Job的run方法中就一行,执行Try(func()),这个func()函数就是上面代码中
    的jobFunc,看到这里整个Job的生成与提交就连通了。

  2. 下面附上一张Job动态生成流程图

webp

以上内容如有错误,欢迎指正



作者:海纳百川_spark
链接:https://www.jianshu.com/p/717b3ed2be54


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消