Spark Streaming中的数据是源源不断流进来的,有时候我们需要计算一些周期性的统计,就不得不维护一下数据的状态。在Spark Streaming中状态管理有两种方式。一种是updateStateByKey,另一种是mapWithState
第一种方式:先获取上一个batch中的状态RDD和当前batch的RDD 做cogroup 得到一个新的状态RDD。这种方式完美的契合了RDD的不变性,但是对性能却会有比较大的影响,因为需要对所有数据做处理,计算量和数据集大小是成线性相关的。
看一下updateStateByKey的代码,在Dstream中并没有找到updateStateByKey()方法,因为updateStateByKey是针对Key-Value的操作,所在可以想到updateStateByKey()方法其实是在PairDStreamFunctions类中,他是通过隐式转换的方式实现的。
代码如下
implicit def toPairDStreamFunctions[K, V](stream: DStream[(K, V)]) (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null): PairDStreamFunctions[K, V] = { new PairDStreamFunctions[K, V](stream) }
接着看updateStateByKey()方法,他有几种重载方式,最终调用以下的updateStateByKey()方法,代码如下
def updateStateByKey[S: ClassTag]( updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)], partitioner: Partitioner, rememberPartitioner: Boolean ): DStream[(K, S)] = ssc.withScope { new StateDStream(self, ssc.sc.clean(updateFunc), partitioner, rememberPartitioner, None) }
这里实例化了一个StateDStream,看一下StateDStream的compute方法,代码如下
override def compute(validTime: Time): Option[RDD[(K, S)]] = { // Try to get the previous state RDD getOrCompute(validTime - slideDuration) match { case Some(prevStateRDD) => { // If previous state RDD exists // Try to get the parent RDD parent.getOrCompute(validTime) match { case Some(parentRDD) => { // If parent RDD exists, then compute as usual computeUsingPreviousRDD (parentRDD, prevStateRDD) } case None => { // If parent RDD does not exist // Re-apply the update function to the old state RDD val updateFuncLocal = updateFunc val finalFunc = (iterator: Iterator[(K, S)]) => { val i = iterator.map(t => (t._1, Seq[V](), Option(t._2))) updateFuncLocal(i) } val stateRDD = prevStateRDD.mapPartitions(finalFunc, preservePartitioning) Some(stateRDD) } } } case None => { // If previous session RDD does not exist (first input data) // Try to get the parent RDD parent.getOrCompute(validTime) match { case Some(parentRDD) => { // If parent RDD exists, then compute as usual initialRDD match { case None => { // Define the function for the mapPartition operation on grouped RDD; // first map the grouped tuple to tuples of required type, // and then apply the update function val updateFuncLocal = updateFunc val finalFunc = (iterator : Iterator[(K, Iterable[V])]) => { updateFuncLocal (iterator.map (tuple => (tuple._1, tuple._2.toSeq, None))) } val groupedRDD = parentRDD.groupByKey (partitioner) val sessionRDD = groupedRDD.mapPartitions (finalFunc, preservePartitioning) // logDebug("Generating state RDD for time " + validTime + " (first)") Some (sessionRDD) } case Some (initialStateRDD) => { computeUsingPreviousRDD(parentRDD, initialStateRDD) } } } case None => { // If parent RDD does not exist, then nothing to do! // logDebug("Not generating state RDD (no previous state, no parent)") None } } } } }
这里代码分几种情况,但最终都调用computeUsingPreviousRDD()方法,关键操作就在computeUsingPreviousRDD()方法中,代码如下
private [this] def computeUsingPreviousRDD ( parentRDD : RDD[(K, V)], prevStateRDD : RDD[(K, S)]) = { // Define the function for the mapPartition operation on cogrouped RDD; // first map the cogrouped tuple to tuples of required type, // and then apply the update function val updateFuncLocal = updateFunc val finalFunc = (iterator: Iterator[(K, (Iterable[V], Iterable[S]))]) => { val i = iterator.map(t => { val itr = t._2._2.iterator val headOption = if (itr.hasNext) Some(itr.next()) else None (t._1, t._2._1.toSeq, headOption) }) updateFuncLocal(i) } val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner) val stateRDD = cogroupedRDD.mapPartitions(finalFunc, preservePartitioning) Some(stateRDD) }
可以看到当前状态的RDD和前一个状态的RDD进行cogroup操作
val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner)
parentRDD中只要有一条数据就会进行cogroup操作的,并将所有数据都进行更新函数(用户定义的)的操作,所以当数据量不断增加的时候,计算量随着线性增加。
第二种方式,在Spark1.6以后出来一种mapWithState的方式,他是一种变通的实现。因为没法变更RDD/Partition等核心概念,所以Spark Streaming在集合元素上做了文章,定义了MapWithStateRDD,将该RDD的元素做了限定,必须是MapWithStateRDDRecord 这个东西。该MapWithStateRDDRecord 保存分区内的所有key的状态(通过stateMap记录)以及计算结果(mappedData),元素MapWithStateRDDRecord 是可变的,但是RDD 依然是不变的。
mapWithState和updateStateByKey一样都是在PairDtreamFuntions类中,mapWithState代码如下
@Experimentaldef mapWithState[StateType: ClassTag, MappedType: ClassTag]( spec: StateSpec[K, V, StateType, MappedType] ): MapWithStateDStream[K, V, StateType, MappedType] = { new MapWithStateDStreamImpl[K, V, StateType, MappedType]( self, spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]] ) }
首先看注解,他是一个实验性的方法,官方还没有推荐使用。
再看spec: StateSpec[K, V, StateType, MappedType],这里并没有接收一个函数,而是一个StateSpec。其实就将函数包装在StateSpec内部而已
这里实例化了一个MapWithStateDStreamImpl,代码如下
private[streaming] class MapWithStateDStreamImpl[ KeyType: ClassTag, ValueType: ClassTag, StateType: ClassTag, MappedType: ClassTag]( dataStream: DStream[(KeyType, ValueType)], spec: StateSpecImpl[KeyType, ValueType, StateType, MappedType]) extends MapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream.context) { private val internalStream = new InternalMapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream, spec) override def slideDuration: Duration = internalStream.slideDuration override def dependencies: List[DStream[_]] = List(internalStream) override def compute(validTime: Time): Option[RDD[MappedType]] = { internalStream.getOrCompute(validTime).map(x=>{ x.flatMap[MappedType](_.mappedData ) }) } /** * Forward the checkpoint interval to the internal DStream that computes the state maps. This * to make sure that this DStream does not get checkpointed, only the internal stream. */ override def checkpoint(checkpointInterval: Duration): DStream[MappedType] = { internalStream.checkpoint(checkpointInterval) this } /** Return a pair DStream where each RDD is the snapshot of the state of all the keys. */ def stateSnapshots(): DStream[(KeyType, StateType)] = { internalStream.flatMap { _.stateMap.getAll().map { case (k, s, _) => (k, s) }.toTraversable } } def keyClass: Class[_] = implicitly[ClassTag[KeyType]].runtimeClass def valueClass: Class[_] = implicitly[ClassTag[ValueType]].runtimeClass def stateClass: Class[_] = implicitly[ClassTag[StateType]].runtimeClass def mappedClass: Class[_] = implicitly[ClassTag[MappedType]].runtimeClass }
MapWithStateDStreamImpl的compute操作其他没有什么内容,主要是从internalStream中获取计算结果,internalStream是在MapWithStateDStreamImpl实例化的时候创建,代码如下
private val internalStream = new InternalMapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream, spec)
看 InternalMapWithStateDStream的compute方法,代码如下
override def compute(validTime: Time): Option[RDD[MapWithStateRDDRecord[K, S, E]]] = { // Get the previous state or create a new empty state RDD // 得到以前状态的RDD或创建一个空状态的RDD val prevStateRDD = getOrCompute(validTime - slideDuration) match { case Some(rdd) => if (rdd.partitioner != Some(partitioner)) { // If the RDD is not partitioned the right way, let us repartition it using the // partition index as the key. This is to ensure that state RDD is always partitioned // before creating another state RDD using it MapWithStateRDD.createFromRDD[K, V, S, E](rdd.flatMap(_.stateMap.getAll()), partitioner, validTime) } else { rdd } case None => MapWithStateRDD.createFromPairRDD[K, V, S, E]( // 获取用户初始化的状态RDD spec.getInitialStateRDD().getOrElse(new EmptyRDD[(K, S)](ssc.sparkContext)), partitioner, validTime ) } // Compute the new state RDD with previous state RDD and partitioned data RDD // Even if there is no data RDD, use an empty one to create a new state RDD // 获取当前要进行计算的RDD val dataRDD = parent.getOrCompute(validTime).getOrElse { context.sparkContext.emptyRDD[(K, V)] } val partitionedDataRDD = dataRDD.partitionBy(partitioner) val timeoutThresholdTime = spec.getTimeoutInterval().map { interval => (validTime - interval).milliseconds } Some(new MapWithStateRDD(prevStateRDD, partitionedDataRDD, mappingFunction, validTime, timeoutThresholdTime)) }
首先获取前一个状态的RDD(prevStateRDD),prevStateRDD在第一次使用的时候调用MapWithStateRDD.createFromPairRDD方法,将自用定义的初始值放在到新生成的stateMap中;如果prevStateRDD分区和当前状态分区不同时会调用MapWithStateRDD.createFromRDD()将状态数据重新分区后放入新生成的stateMap,createFromRDD()方法和createFromPairRDD方法代码如下
def createFromPairRDD[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag]( pairRDD: RDD[(K, S)], partitioner: Partitioner, updateTime: Time): MapWithStateRDD[K, V, S, E] = { val stateRDD = pairRDD.partitionBy(partitioner).mapPartitions ({ iterator => val stateMap = StateMap.create[K, S](SparkEnv.get.conf) // 把用户定义的初始值放入新创建的stateMap iterator.foreach { case (key, state) => stateMap.put(key, state, updateTime.milliseconds) } // 把stateMap放在MapWithStateRDDRecord中做为RDD的元素返回 Iterator(MapWithStateRDDRecord(stateMap, Seq.empty[E])) }, preservesPartitioning = true) val emptyDataRDD = pairRDD.sparkContext.emptyRDD[(K, V)].partitionBy(partitioner) val noOpFunc = (time: Time, key: K, value: Option[V], state: State[S]) => None new MapWithStateRDD[K, V, S, E](stateRDD, emptyDataRDD, noOpFunc, updateTime, None) } def createFromRDD[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag]( rdd: RDD[(K, S, Long)], partitioner: Partitioner, updateTime: Time): MapWithStateRDD[K, V, S, E] = { val pairRDD = rdd.map { x => (x._1, (x._2, x._3)) } val stateRDD = pairRDD.partitionBy(partitioner).mapPartitions({ iterator => val stateMap = StateMap.create[K, S](SparkEnv.get.conf) // 把之前stateMap中的状态数据(key,(state,update))放入一个stateMap中 iterator.foreach { case (key, (state, updateTime)) => stateMap.put(key, state, updateTime) } Iterator(MapWithStateRDDRecord(stateMap, Seq.empty[E])) }, preservesPartitioning = true) val emptyDataRDD = pairRDD.sparkContext.emptyRDD[(K, V)].partitionBy(partitioner) val noOpFunc = (time: Time, key: K, value: Option[V], state: State[S]) => None new MapWithStateRDD[K, V, S, E](stateRDD, emptyDataRDD, noOpFunc, updateTime, None) }
prevStateRDD获取之后实例化MapWithStateRDD,将前一个状态RDD和当前要计算的RDD传递进去,看MapWithStateRDD类的代码
private[streaming] class MapWithStateRDD[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag]( // 存储State数据的RDD private var prevStateRDD: RDD[MapWithStateRDDRecord[K, S, E]], // 计算当前数据的RDD private var partitionedDataRDD: RDD[(K, V)], // 计算函数 mappingFunction: (Time, K, Option[V], State[S]) => Option[E], batchTime: Time, timeoutThresholdTime: Option[Long] ) extends RDD[MapWithStateRDDRecord[K, S, E]]( partitionedDataRDD.sparkContext, // MapWithStateRDD依赖两个父RDD,因为有两个数据来源。一个是状态数据,一个是当前数据 List( new OneToOneDependency[MapWithStateRDDRecord[K, S, E]](prevStateRDD), new OneToOneDependency(partitionedDataRDD)) ) { @volatile private var doFullScan = false require(prevStateRDD.partitioner.nonEmpty) require(partitionedDataRDD.partitioner == prevStateRDD.partitioner) override val partitioner = prevStateRDD.partitioner override def checkpoint(): Unit = { super.checkpoint() doFullScan = true } override def compute(partition: Partition, context: TaskContext): Iterator[MapWithStateRDDRecord[K, S, E]] = { val stateRDDPartition = partition.asInstanceOf[MapWithStateRDDPartition] val prevStateRDDIterator = prevStateRDD.iterator(stateRDDPartition.previousSessionRDDPartition, context) val dataIterator = partitionedDataRDD.iterator(stateRDDPartition.partitionedDataRDDPartition, context) // 因为prevStateRDD只有一个元素,所有取prevStateRDDIterator.next() val prevRecord:Option[MapWithStateRDDRecord[K, S, E]] = if (prevStateRDDIterator.hasNext){ Some(prevStateRDDIterator.next()) } else { None } // 返回一个新的MapWithStateRDDRecord val newRecord = MapWithStateRDDRecord.updateRecordWithData( prevRecord, dataIterator, mappingFunction, batchTime, timeoutThresholdTime, removeTimedoutData = doFullScan // remove timedout data only when full scan is enabled ) // 将新生成的MapWithStateRDDRecord放入迭代器,此迭代器还是只有一个元素 Iterator(newRecord) } override protected def getPartitions: Array[Partition] = { Array.tabulate(prevStateRDD.partitions.length) { i => new MapWithStateRDDPartition(i, prevStateRDD, partitionedDataRDD)} } override def clearDependencies(): Unit = { super.clearDependencies() prevStateRDD = null partitionedDataRDD = null } def setFullScan(): Unit = { doFullScan = true } }
主要看newRecord是怎样生成的,因为newRecord里有所有的状态信息和计算结果,看 MapWithStateRDDRecord.updateRecordWithData的代码
def updateRecordWithData[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag]( // 前一个MapWithStateRDDRecord prevRecord: Option[MapWithStateRDDRecord[K, S, E]], // 当前需要计算的数据 dataIterator: Iterator[(K, V)], // 计算函数 mappingFunction: (Time, K, Option[V], State[S]) => Option[E], batchTime: Time, timeoutThresholdTime: Option[Long], removeTimedoutData: Boolean ): MapWithStateRDDRecord[K, S, E] = { // Create a new state map by cloning the previous one (if it exists) or by creating an empty one // 首先创建一个新的StateMap,这里是从前一个StateMap复制而来的,由于StateMap的复制是采用增量复制, // 新创建的stateMap会引用旧的stateMap val newStateMap = prevRecord.map( _.stateMap.copy()). getOrElse { new EmptyStateMap[K, S]() } val mappedData = new ArrayBuffer[E] val wrappedState = new StateImpl[S]() // Call the mapping function on each record in the data iterator, and accordingly // update the states touched, and collect the data returned by the mapping function // mapWithState操作性能优势就是在这里体现的 dataIterator.foreach { case (key, value) => //将newStateMap中的元素包装一下 wrappedState.wrap(newStateMap.get(key)) // 终于看到用户定义的mappingFunction函数了,传入当前key,当前value,和此key的历史数据 val returned = mappingFunction(batchTime, key, Some(value), wrappedState) if (wrappedState.isRemoved) { // 如果更新值被标记删除 newStateMap.remove(key) } else if (wrappedState.isUpdated || (wrappedState.exists && timeoutThresholdTime.isDefined)) { // 如果当前key的value为标记有更新,就更新newStateMap,重新put操作 newStateMap.put(key, wrappedState.get(), batchTime.milliseconds) } mappedData ++= returned } // Get the timed out state records, call the mapping function on each and collect the // data returned if (removeTimedoutData && timeoutThresholdTime.isDefined) { newStateMap.getByTime(timeoutThresholdTime.get).foreach { case (key, state, _) => wrappedState.wrapTimingOutState(state) val returned = mappingFunction(batchTime, key, None, wrappedState) mappedData ++= returned newStateMap.remove(key) } } // newStateMap 状态集合 // mappedData 返回计算后的结果,这里要注意:因为上面的迭代操作是基于当前RDD的数据, // 所以返回计算后的结果只有当前数据的更新值 MapWithStateRDDRecord(newStateMap, mappedData) }
通过上面的注释已经知道MapWithStateRDD[MapWithStateRDDRecord]类型的RDD的数据是怎么计算的了,接着看InternalMapWithStateDStream的computer方法返回后的操作
override def compute(validTime: Time): Option[RDD[MappedType]] = { internalStream.getOrCompute(validTime).map(x=>{ x.flatMap[MappedType](_.mappedData ) }) }
使用flatMap从MapWithStateRDDRecord中获取mappedData(当前RDD进行状态计算后的结果)并返回,到这里mapWithState的操作就完成了
下面看一个例子
看一个计算wordCount状态操作的Demo,代码如下
package cn.lht.spark.streamingimport _root_.kafka.serializer.StringDecoderimport org.apache.spark.SparkConfimport org.apache.spark.streaming.kafka.KafkaUtilsimport org.apache.spark.streaming._ object StateWordCount { def main(args: Array[String]): Unit = { val topics = "kafkaforspark" val brokers = "*.*.*.*:9092,*.*.*.*:9092" val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[2]") sparkConf.set("spark.testing.memory", "2147480000") val ssc = new StreamingContext(sparkConf, Seconds(5)) ssc.checkpoint("hdfs://mycluster/ceshi/") val topicsSet = topics.split(",").toSet val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers) val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet) .map(_._2.trim).map((_, 1)) // 1. mapWithState操作 val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => { val sum = one.getOrElse(0) + state.getOption.getOrElse(0) val output = (word, sum) state.update(sum) output } val state = StateSpec.function(mappingFunc) messages.reduceByKey(_+_).mapWithState(state).print() // 2. updateStateByKey// val addFunc = (currValues: Seq[Int], prevValueState: Option[Int]) => {// //通过Spark内部的reduceByKey按key规约,然后这里传入某key当前批次的Seq/List,再计算当前批次的总和// val currentCount = currValues.sum// // 已累加的值// val previousCount = prevValueState.getOrElse(0)// // 返回累加后的结果,是一个Option[Int]类型// Some(currentCount + previousCount)// }// messages.updateStateByKey(addFunc,2).print() ssc.start() ssc.awaitTermination() } }
输入数据为三组,分别是
1 2 3 4 5 4 5 6 7 8 6 7 8 9
mapWithState操作结果
(4,1) (5,1) (1,1) (2,1) (3,1) ------------------------------------------- Time: 1464516190000 ms ------------------------------------------- (4,2) (8,1) (5,2) (6,1) (7,1) ------------------------------------------- Time: 1464516195000 ms ------------------------------------------- (8,2) (9,1) (6,2) (7,2)
updateStateByKey操作结果
------------------------------------------- Time: 1464516940000 ms ------------------------------------------- (4,1) (2,1) (5,1) (3,1) (1,1) ------------------------------------------- Time: 1464516945000 ms ------------------------------------------- (4,2) (8,1) (6,1) (2,1) (7,1) (5,2) (3,1) (1,1) ------------------------------------------- Time: 1464516950000 ms ------------------------------------------- (8,2) (4,2) (6,2) (2,1) (7,2) (5,2) (9,1) (3,1) (1,1)
看以上两种操作返回的结果是不一样的,mapWithState返回最新数据的状态结果,而updateStateByKey返回了所有状态结果,具体使用要配合业务进行调整
作者:海纳百川_spark
链接:https://www.jianshu.com/p/2edb6d218be9
共同学习,写下你的评论
评论加载中...
作者其他优质文章