由于机器学习和深度学习不断被炒热,Tensorflow作为Google家(Jeff Dean大神)推出的开源深度学习框架,也获得了很多关注。Tensorflow的灵活性很强,允许用户使用多台机器的多个设备(如不同的CPU和GPU)。但是由于Tensorflow 分布式的方式需要用户在客户端显示指定集群信息,另外需要手动拉起ps, worker等task. 对资源管理和使用上有诸多不便。因此,Yahoo开源了基于Spark的Tensorflow,使用executor执行worker和ps task. 项目地址为:https://github.com/yahoo/TensorFlowOnSpark
写在前面.. 前方高能,请注意!
虽然yahoo提供了如何在Spark集群中运行Tensorflow的步骤,但是由于这个guideline过于简单,一般情况下,根据这个guideline是跑不起来的. :(
Tensorflow on Spark 介绍
TensorflowOnSpark 支持使用Spark/Hadoop集群分布式的运行Tensorflow,号称支持所有的Tensorflow操作。需要注意的是用户需要对原有的TF程序进行简单的改造,就能够运行在Spark集群之上。
如何跑起来Tensorflow on Spark ?
虽然Yahoo在github上说明了安装部署TFS (https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_YARN), 但是根据实际实践,根据这个文档如果能跑起来,那真的要谢天谢地。因为在实际过程中,会因为环境问题遇到一些unexpected error。以下就是我将自己在实践过程中遇到的一些问题总结列举。
编译python和pip
yahoo提供的编译步骤为:
# download and extract Python 2.7export PYTHON_ROOT=~/Python curl -O https://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz tar -xvf Python-2.7.12.tgz rm Python-2.7.12.tgz# compile into local PYTHON_ROOTpushd Python-2.7.12 ./configure --prefix="${PYTHON_ROOT}" --enable-unicode=ucs4 make make installpopdrm -rf Python-2.7.12 # install pippushd "${PYTHON_ROOT}"curl -O https://bootstrap.pypa.io/get-pip.py bin/python get-pip.py rm get-pip.py# install tensorflow (and any custom dependencies)${PYTHON_ROOT}/bin/pip install pydoop# Note: add any extra dependencies herepopd
在实际编译过程中,采用的Centos7.2操作系统,可能出现以下问题:
安装pip报错
bin/python get-pip.py ERROR:root:code for hash sha224 was not found. Traceback (most recent call last):
报这个错一般是因为python中缺少_ssl.so 和 _hashlib.so库造成,可以从系统python库中找对应版本的拷贝到相应的python文件夹下(例如:lib/python2.7/lib-dynload)。
缺少zlib
bin/python get-pip.py Traceback (most recent call last): File "get-pip.py", line 20061, in <module> main() File "get-pip.py", line 194, in main bootstrap(tmpdir=tmpdir) File "get-pip.py", line 82, in bootstrap import pip zipimport.ZipImportError: can't decompress data; zlib not available
解决这个问题的方法是使用yum安装zlib*后,重新编译python后,即可解决。
ssl 报错
bin/python get-pip.py pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available. Collecting pip Could not fetch URL https://pypi.python.org/simple/pip/: There was a problem confirming the ssl certificate: Can't connect to HTTPS URL because the SSL module is not available. - skipping Could not find a version that satisfies the requirement pip (from versions: ) No matching distribution found for pip
解决方法: 在Python安装目录下打开文件lib/python2.7/ssl.py,注释掉 , HAS_ALPN
from _ssl import HAS_SNI, HAS_ECDH, HAS_NPN#, HAS_ALPN
pip install pydoop报错
gcc: error trying to exec 'cc1plus': execvp:
解决办法:需要在机器上安装g++编译器
2.安装编译 TensorFlow w/ RDMA Support
git clone git@github.com:yahoo/tensorflow.git# follow build instructions to install into ${PYTHON_ROOT}
注意编译过程需要google的bazel和protoc, 这两个工具需要提前装好。
3.接下来的步骤按照https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_YARN 指导的步骤完成。
4.在HDP2.5部署的spark on Yarn环境上运行Tensorflow。
在yarn-env.sh中设置环境变量,增加 * export HADOOP_HDFS_HOME=/usr/hdp/2.5.0.0-1245/hadoop-hdfs/*
因为这个环境变量需要在执行tensorflow任务时被用到,如果没有export,会报错。重启YARN,使上述改动生效。
按照Yahoo github上的步骤,执行训练mnist任务时,按下面命令提交作业:
export PYTHON_ROOT=/data2/Python/export LD_LIBRARY_PATH=${PATH}export PYSPARK_PYTHON=${PYTHON_ROOT}/bin/pythonexport SPARK_YARN_USER_ENV="PYSPARK_PYTHON=Python/bin/python"export PATH=${PYTHON_ROOT}/bin/:$PATHexport QUEUE=default spark-submit \ --master yarn \ --deploy-mode cluster \ --queue ${QUEUE} \ --num-executors 4 \ --executor-memory 1G \ --py-files /data2/tesorflowonSpark/TensorFlowOnSpark/tfspark.zip,/data2/tesorflowonSpark/TensorFlowOnSpark/examples/mnist/spark/mnist_dist.py \ --conf spark.dynamicAllocation.enabled=false \ --conf spark.yarn.maxAppAttempts=1 \ --archives hdfs:///user/${USER}/Python.zip#Python \--conf spark.executorEnv.LD_LIBRARY_PATH="/usr/jdk64/jdk1.8.0_77/jre/lib/amd64/server/" \ /data2/tesorflowonSpark/TensorFlowOnSpark/examples/mnist/spark/mnist_spark.py \ --images mnist/csv/test/images \ --labels mnist/csv/test/labels \ --mode inference \ --model mnist_model \ --output predictions
此时,通过Spark界面可以观察到worker0处于阻塞状态。
17/03/21 18:17:18 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 28.4 KB, free 542.6 KB)17/03/21 18:17:18 INFO TorrentBroadcast: Reading broadcast variable 1 took 17 ms17/03/21 18:17:18 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 440.6 KB, free 983.3 KB)2017-03-21 18:17:18,404 INFO (MainThread-14872) Connected to TFSparkNode.mgr on ochadoop03, ppid=14685, state='running'2017-03-21 18:17:18,411 INFO (MainThread-14872) mgr.state='running'2017-03-21 18:17:18,411 INFO (MainThread-14872) Feeding partition <generator object load_stream at 0x7f447f120960> into input queue <multiprocessing.queues.JoinableQueue object at 0x7f447f129890>17/03/21 18:17:20 INFO PythonRunner: Times: total = 2288, boot = -5387, init = 5510, finish = 216517/03/21 18:17:20 INFO PythonRunner: Times: total = 101, boot = 3, init = 21, finish = 772017-03-21 18:17:20.587060: I tensorflow/core/distributed_runtime/master_session.cc:1011] Start master session b5d9a21a16799e0b with config:
通过分析原因发现,在mnist例子中,logdir设置的是hdfs的路径,可能是由于tf对hdfs的支持有限或者存在bug(惭愧,并没有深究 :))。将logdir改为本地目录,就可以正常运行。但是由此又带来了另一个问题,因为Spark每次启动时worker0的位置并不确定,有可能每次启动的机器都不同,这就导致在inference的时候没有办法获得训练的模型。
一个解决办法是:在worker 0训练完模型后,将模型同步到hdfs中,在inference的之前,再
将hdfs的checkpoints文件夹拉取到本地执行。以下为我对yahoo提供的mnist example做的类似的修改.
def writeFileToHDFS(): rootdir = '/tmp/mnist_model' client = HdfsClient(hosts='localhost:50070') client.mkdirs('/user/root/mnist_model') for parent,dirnames,filenames in os.walk(rootdir): for dirname in dirnames: print("parent is:{0}".format(parent)) for filename in filenames: client.copy_from_local(os.path.join(parent,filename), os.path.join('/user/root/mnist_model',filename), overwrite=True)
#logdir = TFNode.hdfs_path(ctx, args.model) logdir = "/tmp/" + args.model while not sv.should_stop() and step < args.steps: # Run a training step asynchronously. # See `tf.train.SyncReplicasOptimizer` for additional details on how to # perform *synchronous* training. # using feed_dict batch_xs, batch_ys = feed_dict() feed = {x: batch_xs, y_: batch_ys} if len(batch_xs) != batch_size: print("done feeding") break else: if args.mode == "train": _, step = sess.run([train_op, global_step], feed_dict=feed) # print accuracy and save model checkpoint to HDFS every 100 steps if (step % 100 == 0): print("{0} step: {1} accuracy: {2}".format(datetime.now().isoformat(), step, sess.run(accuracy,{x: batch_xs, y_: batch_ys}))) else: # args.mode == "inference" labels, preds, acc = sess.run([label, prediction, accuracy], feed_dict=feed) results = ["{0} Label: {1}, Prediction: {2}".format(datetime.now().isoformat(), l, p) for l,p in zip(labels,preds)] TFNode.batch_results(ctx.mgr, results) print("acc: {0}".format(acc)) if task_index == 0: writeFileToHDFS()
当然这段代码只是为了进行说明,并不是很严谨,在上传hdfs的时候,是需要对文件夹是否存在等要做一系列的判断。。。
5.train & inference
向Spark集群提交训练任务.
spark-submit \ --master yarn \ --deploy-mode cluster \ --queue ${QUEUE} \ --num-executors 3 \ --executor-memory 7G \ --py-files /data2/tesorflowonSpark/TensorFlowOnSpark/tfspark.zip,/data2/tesorflowonSpark/TensorFlowOnSpark/examples/mnist/spark/mnist_dist.py \ --conf spark.dynamicAllocation.enabled=false \ --conf spark.yarn.maxAppAttempts=1 \ --archives hdfs:///user/${USER}/Python.zip#Python \--conf spark.executorEnv.LD_LIBRARY_PATH="/usr/jdk64/jdk1.8.0_77/jre/lib/amd64/server/" \ /data2/tesorflowonSpark/TensorFlowOnSpark/examples/mnist/spark/mnist_spark.py \ --images mnist/csv/train/images \ --labels mnist/csv/train/labels \ --mode train \ --model mnist_model
执行起来后,查看Spark UI,可以看到当前训练过程中的作业执行情况。
6.46.43.png
执行完后,检查hdsf,checkpoint目录, 可以看到模型的checkpoints已经上传到hdfs中。
hadoop fs -ls /user/root/mnist_model Found 8 items -rwxr-xr-x 3 root hdfs 179 2017-03-21 18:53 /user/root/mnist_model/checkpoint -rwxr-xr-x 3 root hdfs 117453 2017-03-21 18:53 /user/root/mnist_model/graph.pbtxt -rwxr-xr-x 3 root hdfs 814164 2017-03-21 18:53 /user/root/mnist_model/model.ckpt-0.data-00000-of-00001-rwxr-xr-x 3 root hdfs 372 2017-03-21 18:53 /user/root/mnist_model/model.ckpt-0.index -rwxr-xr-x 3 root hdfs 45557 2017-03-21 18:53 /user/root/mnist_model/model.ckpt-0.meta -rwxr-xr-x 3 root hdfs 814164 2017-03-21 18:53 /user/root/mnist_model/model.ckpt-338.data-00000-of-00001-rwxr-xr-x 3 root hdfs 372 2017-03-21 18:53 /user/root/mnist_model/model.ckpt-338.index -rwxr-xr-x 3 root hdfs 45557 2017-03-21 18:53 /user/root/mnist_model/model.ckpt-338.meta
根据训练的结果,执行模型inference
spark-submit \ --master yarn \ --deploy-mode cluster \ --queue ${QUEUE} \ --num-executors 4 \ --executor-memory 1G \ --py-files /data2/tesorflowonSpark/TensorFlowOnSpark/tfspark.zip,/data2/tesorflowonSpark/TensorFlowOnSpark/examples/mnist/spark/mnist_dist.py \ --conf spark.dynamicAllocation.enabled=false \ --conf spark.yarn.maxAppAttempts=1 \ --archives hdfs:///user/${USER}/Python.zip#Python \--conf spark.executorEnv.LD_LIBRARY_PATH="/usr/jdk64/jdk1.8.0_77/jre/lib/amd64/server/" \ /data2/tesorflowonSpark/TensorFlowOnSpark/examples/mnist/spark/mnist_spark.py \ --images mnist/csv/test/images \ --labels mnist/csv/test/labels \ --mode inference \ --model mnist_model \ --output predictions
等任务执行完成后,会发现,模型判断的结果已经输出到hdfs相关目录下了。
hadoop fs -ls /user/root/predictions Found 11 items -rw-r--r-- 3 root hdfs 0 2017-03-21 19:16 /user/root/predictions/_SUCCESS -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00000 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00001 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00002 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00003 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00004 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00005 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00006 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00007 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00008 -rw-r--r-- 3 root hdfs 51000 2017-03-21 19:16 /user/root/predictions/part-00009
查看其中的某一个文件,可看到里面保存的是测试集的标签和根据模型预测的结果。
# hadoop fs -cat /user/root/predictions/part-000002017-03-21T19:16:40.795694 Label: 7, Prediction: 7 2017-03-21T19:16:40.795729 Label: 2, Prediction: 2 2017-03-21T19:16:40.795741 Label: 1, Prediction: 1 2017-03-21T19:16:40.795750 Label: 0, Prediction: 0 2017-03-21T19:16:40.795759 Label: 4, Prediction: 4 2017-03-21T19:16:40.795769 Label: 1, Prediction: 1 2017-03-21T19:16:40.795778 Label: 4, Prediction: 4 2017-03-21T19:16:40.795787 Label: 9, Prediction: 9 2017-03-21T19:16:40.795796 Label: 5, Prediction: 6 2017-03-21T19:16:40.795805 Label: 9, Prediction: 9 2017-03-21T19:16:40.795814 Label: 0, Prediction: 0 2017-03-21T19:16:40.795822 Label: 6, Prediction: 6 2017-03-21T19:16:40.795831 Label: 9, Prediction: 9 2017-03-21T19:16:40.795840 Label: 0, Prediction: 0 2017-03-21T19:16:40.795848 Label: 1, Prediction: 1 2017-03-21T19:16:40.795857 Label: 5, Prediction: 5 2017-03-21T19:16:40.795866 Label: 9, Prediction: 9 2017-03-21T19:16:40.795875 Label: 7, Prediction: 7 2017-03-21T19:16:40.795883 Label: 3, Prediction: 3 2017-03-21T19:16:40.795892 Label: 4, Prediction: 4 2017-03-21T19:16:40.795901 Label: 9, Prediction: 9 2017-03-21T19:16:40.795909 Label: 6, Prediction: 6 2017-03-21T19:16:40.795918 Label: 6, Prediction: 6
Spark集群和tensorflow job task的对应关系,如下图,spark集群起了4个executor,其中一个作为PS, 另外3个作为worker,而谁做ps谁做worker是由Yarn和spark调度的。
7.22.23.png
Cluster spec: {'ps': ['ochadoop02:50060'], 'worker': ['ochadoop04:52150', 'ochadoop03
作者:biggeng
链接:https://www.jianshu.com/p/72cb5816a0f7
共同学习,写下你的评论
评论加载中...
作者其他优质文章