上篇博文中我们讲解了,AppClient和Executor是如何启动,如何为逻辑上与物理上的资源调度,以及分析了在Spark1.4之前逻辑上资源调度算法的bug。
这篇博文,我们就来讲讲Executor启动后,是如何在Executor上执行Task的,以及其后续处理。
执行Task
我们在中提到了,任务调度完成后,CoarseGrainedSchedulerBackend.DriverEndpoint会调用launchTasks向CoarseGrainedExecutorBackend发送带着serializedTask的LaunchTask信号。接下来,我们就来讲讲CoarseGrainedExecutorBackend接收到LaunchTask信号后,是如何执行Task的。
调用栈如下:
CoarseGrainedExecutorBackend.receive
Executor.launchTask
Executor.updateDependencies
Task.run
ShuffleMapTask.runTask
ResultTask.runTask
Executor.TaskRunner.run
CoarseGrainedExecutorBackend.receive
case LaunchTask(data) => if (executor == null) { exitExecutor(1, "Received LaunchTask command but executor was null") } else { // 反序列话task描述 val taskDesc = ser.deserialize[TaskDescription](data.value) logInfo("Got assigned task " + taskDesc.taskId) // 调用executor.launchTask executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber, taskDesc.name, taskDesc.serializedTask) }
Executor.launchTask
def launchTask( context: ExecutorBackend, taskId: Long, attemptNumber: Int, taskName: String, serializedTask: ByteBuffer): Unit = { // 创建TaskRunner val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName, serializedTask) // 把taskID 以及 对应的 TaskRunner, // 加入到 ConcurrentHashMap[Long, TaskRunner] runningTasks.put(taskId, tr) // 线程池 执行 TaskRunner threadPool.execute(tr) }
Executor.TaskRunner.run
override def run(): Unit = { val threadMXBean = ManagementFactory.getThreadMXBean val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId) // 记录开始反序列化的时间 val deserializeStartTime = System.currentTimeMillis() // 记录开始反序列化的时的Cpu时间 val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L Thread.currentThread.setContextClassLoader(replClassLoader) val ser = env.closureSerializer.newInstance() logInfo(s"Running $taskName (TID $taskId)") execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER) var taskStart: Long = 0 var taskStartCpu: Long = 0 // 开始GC的时间 startGCTime = computeTotalGcTime() try { //反序列化任务信息 val (taskFiles, taskJars, taskProps, taskBytes) = Task.deserializeWithDependencies(serializedTask) // 根据taskProps设置executor属性 Executor.taskDeserializationProps.set(taskProps) // 根据taskFiles和taskJars, // 下载任务所需的File 和 加载所需的Jar包 updateDependencies(taskFiles, taskJars) // 根据taskBytes生成task task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader) //设置task属性 task.localProperties = taskProps //设置task内存管理 task.setTaskMemoryManager(taskMemoryManager) // 若在反序列话之前Task就被kill了, // 抛出异常 if (killed) { throw new TaskKilledException } logDebug("Task " + taskId + "'s epoch is " + task.epoch) //更新mapOutputTracker Epoch 为task epoch env.mapOutputTracker.updateEpoch(task.epoch) // 记录任务开始时间 taskStart = System.currentTimeMillis() // 记录任务开始时的cpu时间 taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L var threwException = true val value = try { // 运行Task val res = task.run( taskAttemptId = taskId, attemptNumber = attemptNumber, metricsSystem = env.metricsSystem) threwException = false res } finally { val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId) val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory() if (freedMemory > 0 && !threwException) { val errMsg = s"Managed memory leak detected; size = $freedMemory bytes, TID = $taskId" if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak", false)) { throw new SparkException(errMsg) } else { logWarning(errMsg) } } if (releasedLocks.nonEmpty && !threwException) { val errMsg = s"${releasedLocks.size} block locks were not released by TID = $taskId:\n" + releasedLocks.mkString("[", ", ", "]") if (conf.getBoolean("spark.storage.exceptionOnPinLeak", false)) { throw new SparkException(errMsg) } else { logWarning(errMsg) } } } // 记录任务结束时间 val taskFinish = System.currentTimeMillis() // 记录任务结束时的cpu时间 val taskFinishCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L // 若task在运行中被kill了 // 则抛出异常 if (task.killed) { throw new TaskKilledException } val resultSer = env.serializer.newInstance() // 结果记录序列化开始的系统时间 val beforeSerialization = System.currentTimeMillis() // 序列化结果 val valueBytes = resultSer.serialize(value) // 结果记录序列化完成的系统时间 val afterSerialization = System.currentTimeMillis() // 反序列话发生在两个地方: // 1. 在该函数下反序列化Task信息以及Task实例。 // 2. 在任务启动后,Task.run 反序列化 RDD 和 函数 // 计算task的反序列化费时 task.metrics.setExecutorDeserializeTime( (taskStart - deserializeStartTime) + task.executorDeserializeTime) // 计算task的反序列化cpu费时 task.metrics.setExecutorDeserializeCpuTime( (taskStartCpu - deserializeStartCpuTime) + task.executorDeserializeCpuTime) // 计算task运行费时 task.metrics.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime) // 计算task运行cpu费时 task.metrics.setExecutorCpuTime( (taskFinishCpu - taskStartCpu) - task.executorDeserializeCpuTime) // 计算GC时间 task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime) //计算结果序列化时间 task.metrics.setResultSerializationTime(afterSerialization - beforeSerialization) val accumUpdates = task.collectAccumulatorUpdates() // 这里代码存在缺陷: // value相当于被序列化了两次 val directResult = new DirectTaskResult(valueBytes, accumUpdates) val serializedDirectResult = ser.serialize(directResult) // 得到结果的大小 val resultSize = serializedDirectResult.limit // 对于计算结果,会根据结果的大小有不同的策略: // 1.生成结果在(正无穷,1GB): // 超过1GB的部分结果直接丢弃, // 可以通过spark.driver.maxResultSize实现 // 默认为1G // 2.生成结果大小在$[1GB,128MB - 200KB] // 会把该结果以taskId为编号存入BlockManager中, // 然后把该编号通过Netty发送给Driver, // 该阈值是Netty框架传输的最大值 // spark.akka.frameSize(默认为128MB)和Netty的预留空间reservedSizeBytes(200KB)的差值 // 3.生成结果大小在(128MB - 200KB,0): // 直接通过Netty发送到Driver val serializedResult: ByteBuffer = { if (maxResultSize > 0 && resultSize > maxResultSize) { logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " + s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " + s"dropping it.") ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize)) } else if (resultSize > maxDirectResultSize) { val blockId = TaskResultBlockId(taskId) env.blockManager.putBytes( blockId, new ChunkedByteBuffer(serializedDirectResult.duplicate()), StorageLevel.MEMORY_AND_DISK_SER) logInfo( s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)") ser.serialize(new IndirectTaskResult[Any](blockId, resultSize)) } else { logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver") serializedDirectResult } } // 更新execBackend 状态 execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult) } catch { case ffe: FetchFailedException => val reason = ffe.toTaskFailedReason setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason)) case _: TaskKilledException => logInfo(s"Executor killed $taskName (TID $taskId)") setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled)) case _: InterruptedException if task.killed => logInfo(s"Executor interrupted and killed $taskName (TID $taskId)") setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled)) case CausedBy(cDE: CommitDeniedException) => val reason = cDE.toTaskFailedReason setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason)) case t: Throwable => logError(s"Exception in $taskName (TID $taskId)", t) val accums: Seq[AccumulatorV2[_, _]] = if (task != null) { task.metrics.setExecutorRunTime(System.currentTimeMillis() - taskStart) task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime) task.collectAccumulatorUpdates(taskFailed = true) } else { Seq.empty } val accUpdates = accums.map(acc => acc.toInfo(Some(acc.value), None)) val serializedTaskEndReason = { try { ser.serialize(new ExceptionFailure(t, accUpdates).withAccums(accums)) } catch { case _: NotSerializableException => ser.serialize(new ExceptionFailure(t, accUpdates, false).withAccums(accums)) } } setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.FAILED, serializedTaskEndReason) if (Utils.isFatalError(t)) { SparkUncaughtExceptionHandler.uncaughtException(t) } } finally { // 任务结束后移除 runningTasks.remove(taskId) } }
Executor.updateDependencies
接下来,我们来看看更新executor的依赖,即下载任务所需的File和加载所需的Jar包:
private def updateDependencies(newFiles: HashMap[String, Long], newJars: HashMap[String, Long]) { lazy val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf) synchronized { // 下载任务所需的File for ((name, timestamp) <- newFiles if currentFiles.getOrElse(name, -1L) < timestamp) { logInfo("Fetching " + name + " with timestamp " + timestamp) Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf, env.securityManager, hadoopConf, timestamp, useCache = !isLocal) currentFiles(name) = timestamp } // 加载所需的Jar包 for ((name, timestamp) <- newJars) { val localName = name.split("/").last val currentTimeStamp = currentJars.get(name) .orElse(currentJars.get(localName)) .getOrElse(-1L) if (currentTimeStamp < timestamp) { logInfo("Fetching " + name + " with timestamp " + timestamp) Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf, env.securityManager, hadoopConf, timestamp, useCache = !isLocal) currentJars(name) = timestamp // 把它加入到 class loader val url = new File(SparkFiles.getRootDirectory(), localName).toURI.toURL if (!urlClassLoader.getURLs().contains(url)) { logInfo("Adding " + url + " to class loader") urlClassLoader.addURL(url) } } } } }
Task.run
接下来,我们来看看这篇博文最核心的部分——task运行:
final def run( taskAttemptId: Long, attemptNumber: Int, metricsSystem: MetricsSystem): T = { SparkEnv.get.blockManager.registerTask(taskAttemptId) //创建TaskContextImpl context = new TaskContextImpl( stageId, partitionId, taskAttemptId, attemptNumber, taskMemoryManager, localProperties, metricsSystem, metrics) //在TaskContext中设置TaskContextImpl TaskContext.setTaskContext(context) taskThread = Thread.currentThread() if (_killed) { kill(interruptThread = false) } new CallerContext("TASK", appId, appAttemptId, jobId, Option(stageId), Option(stageAttemptId), Option(taskAttemptId), Option(attemptNumber)).setCurrentContext() try { // 调用runTask runTask(context) } catch { case e: Throwable => try { context.markTaskFailed(e) } catch { case t: Throwable => e.addSuppressed(t) } throw e } finally { // 标记Task完成 context.markTaskCompleted() try { Utils.tryLogNonFatalError { // 释放内存 SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(MemoryMode.ON_HEAP) SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(MemoryMode.OFF_HEAP) val memoryManager = SparkEnv.get.memoryManager memoryManager.synchronized { memoryManager.notifyAll() } } } finally { //取消TaskContext设置 TaskContext.unset() } } }
Task有两个子类,一个是非最后的Stage的Task,ShuffleMapTask;一个是最后的Stage的Task,ResultTask。它们都覆盖了Task的runTask方法,接下来我们就分别来讲下它们的runTask方法。
ShuffleMapTask.runTask
根据每个Stage的partition数量来生成ShuffleMapTask,ShuffleMapTask会根据下游的Partition数量和Shuffle的策略来生成一系列文件。
override def runTask(context: TaskContext): MapStatus = { val threadMXBean = ManagementFactory.getThreadMXBean // 记录反序列化开始时间 val deserializeStartTime = System.currentTimeMillis() // 记录反序列化开始时的Cpu时间 val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L val ser = SparkEnv.get.closureSerializer.newInstance() // 反序列化rdd 及其 依赖 val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) // 计算 反序列化费时 _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime // 计算 反序列化Cpu费时 _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime } else 0L var writer: ShuffleWriter[Any, Any] = null try { //获取shuffleManager val manager = SparkEnv.get.shuffleManager // writer writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context) // 调用writer.write 开始计算RDD, // 这部分 我们会在后续博文讲解 writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) // 停止计算,并返回结果 writer.stop(success = true).get } catch { case e: Exception => try { if (writer != null) { writer.stop(success = false) } } catch { case e: Exception => log.debug("Could not stop writer", e) } throw e } }
ResultTask.runTask
override def runTask(context: TaskContext): U = { val threadMXBean = ManagementFactory.getThreadMXBean // 记录反序列化开始时间 val deserializeStartTime = System.currentTimeMillis() // 记录反序列化开始时的Cpu时间 val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L val ser = SparkEnv.get.closureSerializer.newInstance() // 反序列化rdd 及其 作用于RDD的结果函数 val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) // 计算 反序列化费时 _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime // 计算 反序列化Cpu费时 _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime } else 0L // 这部分 我们会在后续博文讲解 func(context, rdd.iterator(partition, context)) }
后续处理
计量统计
对各个费时的统计,上章已经讲解。
回收内存
这在上章Task.run也已经讲解。
处理执行结果
Executor.TaskRunner.run的execBackend.statusUpdate
作者:小爷Souljoy
链接:https://www.jianshu.com/p/e4c8d4d25d87
共同学习,写下你的评论
评论加载中...
作者其他优质文章