导入相应的包:
#这一行是我tensorflow的问题,其实不用导入import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'import numpy as npimport kerasfrom keras.models import Sequentialfrom keras.layers.core import Dense, Dropout, Activationfrom keras.layers import Convolution2D, MaxPooling2D, Flattenfrom keras.optimizers import SGD, Adamfrom keras.utils import np_utilsfrom keras.datasets import mnist
价值数据,因为mnist好像被墙了,所以是下载好数据放入MNIST_data文件夹之中的。
def load_data(): #网络下载失败 #(x_train, y_train), (x_test, y_test) = mnist.load_data('mnist.npz') #读取本地数据 path = './mnist.npz' f = np.load(path) x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] f.close() number = 10000 x_train = x_train[0: number] y_train = y_train[0: number] x_train = x_train.reshape(number, 28 * 28) x_test = x_test.reshape(x_test.shape[0], 28 * 28) x_train = x_train.astype('float32') x_test = x_train.astype('float32') # convert class vectors to binary class matrices y_train = np_utils.to_categorical(y_train, 10) y_test = np_utils.to_categorical(y_test, 10) x_train = x_train x_test = x_test # x_test = np.random.normal(x_test) x_train = x_train / 255 x_test = x_test / 255 return (x_train, y_train), (x_test, y_test)
第一次调试代码:
(x_train, y_train), (x_test, y_test) = load_data()#验证数据是够加载print(x_train.shape)#申明一个模型model = Sequential() model.add(Dense(input_dim=28 * 28, units=689, activation='sigmoid')) model.add(Dense(units=689, activation='sigmoid')) model.add(Dense(units=689, activation='sigmoid')) model.add(Dense(units=10, activation='softmax')) model.compile(loss='mse', optimizer=SGD(lr=0.1), metrics=['accuracy'])#开始训练model.fit(x_train, y_train, batch_size=100, epochs=20) result = model.evaluate(x_train, y_train, batch_size=10000) print('\nTrain Acc:', result[1]) result = model.evaluate(x_test, y_test, batch_size=10000) print('\nTest Acc:', result[1])
结果:
image.png
第二次调试:
在训练集上表现都不好,没有训练起来,修改loss functon为categorical_crossentropy
# model.compile(loss='mse', optimizer=SGD(lr=0.1), metrics=['accuracy'])model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1), metrics=['accuracy'])
结果:已经训练起来了,overfitting
image.png
第三次调试:调整batch_size
结果:并不是越大越好,batch_size为1是没有调用GPU
第四次调试:deep,添加10层hidden layer
for i in range(10): model.add(Dense(units=689, activation='sigmoid')) model.add(Dense(units=10, activation='softmax'))
结果:training和testing都坏掉了:
image.png
第五次调试:修改activation,改为relu
relu可以避免神经网络后面过早收敛
model.add(Dense(input_dim=28 * 28, units=689, activation='relu'))for i in range(10): model.add(Dense(units=689, activation='relu')) model.add(Dense(units=10, activation='softmax'))
结果
image.png
第六次调试:加上dropout
#申明一个模型model = Sequential() model.add(Dense(input_dim=28 * 28, units=689, activation='relu')) model.add(Dropout(0.7)) model.add(Dense(units=689, activation='relu')) model.add(Dropout(0.7)) model.add(Dense(units=689, activation='relu')) model.add(Dropout(0.7))# for i in range(10):# model.add(Dense(units=689, activation='relu'))model.add(Dense(units=10, activation='softmax'))
结果:和上面差不多,并没有像老师演示的那样在testing set上也表现比较好,有没有大佬来给我讲讲!!!谢谢!!
作者:米特尼克大粉丝
链接:https://www.jianshu.com/p/72aeb368fa9e
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦