为了账号安全,请及时绑定邮箱和手机立即绑定

AI学习笔记——强化学习之Model-Free Prediction--解决未知环境下的预测问题

标签:
机器学习

前面关于强化学习的文章中介绍了MDP,动态规划的方法对MDP问题的V函数进行评估和求最优策略。然而现实问题中,往往很多时候环境是未知的。那么这篇文章就介绍一下在未知环境下用Model Free的方法预测MDP。

1. Monte-Carlo (蒙特卡洛)策略估计

Monte-Carlo(MC)方法广泛应用于数学、物理和金融等领域。比如在物理学中研究离子运动轨迹,我们就可以采用Monte-Carlo方法进行多次随机抽样,观测离子运动规律。

同样的,在解决强化学习问题的时候,机器人面对未知环境的时候,它也可以用MC的方法评估当前策略。如果想知道当前策略π,当前状态s下的价值函数V函数,在当前策略π下直接行动,待到达终点之后(完成一个episode),再复盘整个过程所获得的奖励,评估出s状态下的V函数。然后再不停迭代,最终获得该策略π下s状态下的真实V函数Vπ(s)。

当然Monte-Carlo策略估计方法也分为首次访问MC方法和每次访问MC方法,两者唯一的不同只有一处,下面算法过程中在括号中的就是每次访问MC方法。

算法过程如下:

  1. 在一个episode中,当s状态第一次被访问到(或者每次被访问到)的时候,计数器N(S)=N(S)+1。

  2. 总共得到的奖励S(s) = S(s) + Gt

  3. 价值V函数的数值V(s)= S(s) /N(s)

  4. 当迭代无数次之后,根据大数定理,V(s)就应该趋近真实的V函数Vπ(s)

2. Monte-Carlo(MC)迭代更新

在介绍Monte-Carlo迭代更新之前必须先引入一个迭代求平均的例子。比如你想算一箱苹果中苹果的平均重量,简单的方法是随机抽取几个苹果,将这几个苹果的重量相加再除以个数就估算出了苹果的平均重量。

如果想让这个估计更加精确,你又从箱子里面拿出一个苹果,这时候还需要将所有拿出来的苹果重量相加吗?当然不需要。你只需要将这个苹果的重量减去之前求得的平均数,再除以总共拿出苹果的数量得到误差。最后原平均数加上这个误差就是新的平均数了。证明过程如下。


webp

有了这个迭代求平均值的方法我们就可以改进MC算法,不用记住总共得到的奖励S(s)了

对于每个St,和奖励Gt


webp

其实我们甚至都不用记住N(St), 因为在非静态的(Non-Stationary)的问题中,如果N越大,就意味着误差越小,当前行动对V函数的纠正就越小。所以在实际过程中我们往往用一个固定的学习速率α来代替1/N(St):

webp

这个公式是不是跟之前的梯度下降(Gradient Desent)方法非常类似了。

3. Temporal-Defference (TD)算法

MC有一个很大的缺点,就是要更新V(s)一定要走完整个epsoide。TD方法不需要走完整个epsoide,走有限几步就可以更新,极端情况下TD(0)甚至可以走一步就更新。

回顾MC算法:

webp


其中


webp

TD(0)算法:

webp

如英文描述红色文字部分叫做TD-target。与MC类似括号里面的误差叫做TD error

4. MC vs TD

MC有高Variance 零Bias:

  • 收敛性好

  • 对初始值不敏感

  • 算法容易理解和使用

MC 对解决非马可夫环境(或者部分马可夫环境)效果好。

TD有低的Variance,一些Bias

  • 比MC效率高

  • TD(0)能收敛于Vπ(s)

  • 对初始值敏感

TD能探索出马可夫模型,对马可夫环境效果好。

5. DP,MC,TD比较

之前文章中介绍的动态规划(DP),与MC,TD相比较可以发现


webp

从抽样的数量和反馈的深度可以这样理解DP,MC和TD


webp

实际上TD不仅仅只有只走一步的TD(0), 可以是n TD(n)。当n等于无穷大的时候TD=MC


webp



作者:Hongtao洪滔
链接:https://www.jianshu.com/p/f54b0e5eb0ff


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消