为了账号安全,请及时绑定邮箱和手机立即绑定

二分法查找

标签:
深度学习

# 二分查找(折半查找)

title: 二分查找
tags: 数据结构与算法之美
author: 辰砂


一、简介

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列 (解释:所以二分查找的时候一定要是有序的数组

二、过程

若k==R[mid].key,查找成功
若k<R[mid].key,则high=mid-1若k>R[mid].key,则low=mid+1

1.查找 21

5be9a4da000168ab13100786.jpg

2.查找70

5be9a4db00017fe411280768.jpg

5be9a4db00018de314160832.jpg

三、算法描述

1.非递归

设表长为n,low、high和mid分别指向待查元素所在区间的上界、下界和中点,k为给定值

初始时,令low=1,high=n,mid=(low+high)/2

让k与mid指向的记录比较

若k==R[mid].key,查找成功

若k<R[mid].key,则high=mid-1

若k>R[mid].key,则low=mid+1

重复上述操作,直至low>high时,查找失败

int Search_Bin(SSTable ST,KeyType key){//若找到,则函数值为该元素在表中的位置,否则为0
    low=1;high=ST.length;                        while(low<=high){
        mid=(low+high)/2;        if(key==ST.R[mid].key) return mid; 
        else if(key<ST.R[mid].key) high=mid-1;//前一子表查找
        else low=mid+1;                             //后一子表查找
    }                                       return 0;       //表中不存在待查元素}

2.递归

int Search_Bin (SSTable ST, keyType key, int low, int high) { 
  if(low>high) return 0;   //查找不到时返回0 
  mid=(low+high)/2; 
  if(key==ST.elem[mid].key)  return mid; 
  else if(key<ST.elem[mid].key)  
    return search_Bin(ST,key,low,mid-1);//递归
  else  return search_Bin(ST,key,mid+1,high); //递归}

3、完整代码

public class BinarySearch {    public static void main(String[] args) {        int[] nums = {1, 4, 5, 8, 9};
        System.out.println(binarySearch(nums, 1));
        System.out.println(binarySearchRecursion(nums, 1, 0, nums.length - 1));
    }    /**
     * 循环
     *
     * @param nums
     * @param target
     *
     * @return
     */
    public static int binarySearch(int[] nums, int target) {        if (nums.length < 0) {            return -1;
        }        int left = 0;        int right = nums.length - 1;        while (left <= right) {            int mid = (left - right) / 2 + right;            if (target == nums[mid]) {                return mid;
            } else if (target > nums[mid]) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }        return -1;
    }    /**
     * 递归
     *
     * @param nums
     * @param target
     * @param left
     * @param right
     *
     * @return
     */
    public static int binarySearchRecursion(int[] nums, int target, int left, int right) {        if (nums.length < 0 || left < 0 || right > nums.length - 1) {            return -1;
        }        int mid = (left - right) / 2 + right;        if (left <= right) {            if (target == nums[mid]) {                return mid;
            } else if (target > nums[mid]) {                return binarySearchRecursion(nums, target, mid + 1, right);
            } else {                return binarySearchRecursion(nums, target, left, mid - 1);
            }
        }        return -1;
    }

四、折半查找的性能分析

判定树:树中每个结点表示表中一个记录,结点中的值为该记录在表中的位置,通常称这个查找过程的二叉树称为判定树。折半查找法在成功时进行比较的关键字个数最多不超过树的深度。(折半查找的运行过程可以用二叉树来描述,这棵树通常称为“判定树”)

关键字的平均比较次数,也称平均搜索长度ASL(Average Search Length)

5be9a4dc000112ca14040650.jpg

如上图而言是11个节点
5be9a4dc000106f914580710.jpg

假设概率都相等的情况下:ASL=1/11(11+2×2+4×3+4*4 )=33/11=3
查找成功时比较次数:为该结点在判定树上的层次数,不超过树的深度 d =  log2 n  + 1
查找不成功的过程就是走了一条从根结点到外部结点的路径d或d-1。

查找过程:每次将待查记录所在区间缩小一半,比顺序查找效率高,时间复杂度O(log2 n)

适用条件:采用顺序存储结构的有序表,不宜用于链式结构

五、优化

由上面可以知道二分法的代码的核心

mid=(low+high)/2;if(key==ST.R[mid].key) return mid; 
 else if(key<ST.R[mid].key) high=mid-1;//前一子表查找
  else low=mid+1;

思考:极端情况下会不会产生数组溢出,答案是肯定的,因为极端情况下,当high为int类型的临界最大值的时候,low只要变化,两者相加肯定会溢出。为了效率更高,我们也可以用位运算,

改进代码:

int mid = (left - right) >> 2 + right;

六、二分法练习

https://leetcode.com/problemset/all/?topicSlugs=binary-search


参考

https://www.cnblogs.com/ciyeer/p/9065781.html

原文出处:https://www.cnblogs.com/tojian/p/9934073.html  

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消