为了账号安全,请及时绑定邮箱和手机立即绑定

大数据从业者应该知道的开源工具(全)

标签:
大数据

前言

想要成为大数据工程师这些开源工具你要有所了解

一、Hadoop相关工具

1. Hadoop

Apache的Hadoop项目已几乎与大数据划上了等号。它不断壮大起来,已成为一个完整的生态系统,众多开源工具面向高度扩展的分布式计算。

支持的操作系统:Windows、Linux和OS X。

相关链接:http://hadoop.apache.org

2. Ambari

webp

作为Hadoop生态系统的一部分,这个Apache项目提供了基于Web的直观界面,可用于配置、管理和监控Hadoop集群。有些开发人员想把Ambari的功能整合到自己的应用程序当中,Ambari也为他们提供了充分利用REST(代表性状态传输协议)的API。

支持的操作系统:Windows、Linux和OS X。

相关链接:http://ambari.apache.org

3. Avro

这个Apache项目提供了数据序列化系统,拥有丰富的数据结构和紧凑格式。模式用JSON来定义,它很容易与动态语言整合起来。

支持的操作系统:与操作系统无关。

相关链接:http://avro.apache.org

4. Cascading

Cascading是一款基于Hadoop的应用程序开发平台。提供商业支持和培训服务。

支持的操作系统:与操作系统无关。

相关链接:http://www.cascading.org/projects/cascading/

5. Chukwa

Chukwa基于Hadoop,可以收集来自大型分布式系统的数据,用于监控。它还含有用于分析和显示数据的工具。

支持的操作系统:Linux和OS X。

相关链接:http://chukwa.apache.org

6. Flume

Flume可以从其他应用程序收集日志数据,然后将这些数据送入到Hadoop。官方网站声称:“它功能强大、具有容错性,还拥有可以调整优化的可靠性机制和许多故障切换及恢复机制。”

支持的操作系统:Linux和OS X。

相关链接:https://cwiki.apache.org/confluence/display/FLUME/Home

7. HBase

HBase是为有数十亿行和数百万列的超大表设计的,这是一种分布式数据库,可以对大数据进行随机性的实时读取/写入访问。它有点类似谷歌的Bigtable,不过基于Hadoop和Hadoop分布式文件系统(HDFS)而建。

支持的操作系统:与操作系统无关。

相关链接:http://hbase.apache.org

8. Hadoop分布式文件系统(HDFS)

HDFS是面向Hadoop的文件系统,不过它也可以用作一种独立的分布式文件系统。它基于Java,具有容错性、高度扩展性和高度配置性。

支持的操作系统:Windows、Linux和OS X。

相关链接:https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

9. Hive

Apache Hive是面向Hadoop生态系统的数据仓库。它让用户可以使用HiveQL查询和管理大数据,这是一种类似SQL的语言。

支持的操作系统:与操作系统无关。

相关链接:http://hive.apache.org

10. Hivemall

Hivemall结合了面向Hive的多种机器学习算法。它包括诸多高度扩展性算法,可用于数据分类、递归、推荐、k最近邻、异常检测和特征哈希。

支持的操作系统:与操作系统无关。

相关链接:https://github.com/myui/hivemall

11. Mahout

12. MapReduce

13. Oozie

14. Pig

15. Sqoop

16. Spark

17. Tez

18. Zookeeper

二、大数据分析平台和工具

19. Disco

20. HPCC

21. Lumify

22. Pandas

23. Storm

三、数据库/数据仓库

24. Blazegraph

25. Cassandra

26. CouchDB

27. FlockDB

28. Hibari

29. Hypertable

30. Impala

31. InfoBright社区版

32. MongoDB

33. Neo4j

34. OrientDB

35. Pivotal Greenplum Database

36. Riak

37. Redis

四、商业智能

38. Talend Open Studio

39. Jaspersoft

40. Pentaho

41. SpagoBI

42. KNIME

43. BIRT

五、数据挖掘

44.DataMelt

45. KEEL

46. Orange

47. RapidMiner

48. Rattle

49. SPMF

50. Weka

六、查询引擎

51. Drill

七、编程语言

52. R

53. ECL

八、大数据搜索

54. Lucene

九、内存中技术

链接

由于由于链接太多,我做了一个word文档,由于简书不能上传文件,需要答案可以加小编的qq交流群531629188,在里面直接获取文档,

不管你是小白还是大牛,

小编我都挺欢迎,今天的已经资讯上传到群文件,不定期分享干货,

包括我自己整理的一份最新的适合2018年学习的大数据教程,欢迎初学和进阶中的小伙伴。

webp



作者:风火数据
链接:https://www.jianshu.com/p/1a5f4722dca8


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消