为了账号安全,请及时绑定邮箱和手机立即绑定

大数据学习思路分解(3)storm流式计算

标签:
Storm

Storm是一个分布式的、高容错的实时计算系统。Storm适用的场景:

1、Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。

2、由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用。

webp

那么下面就对大数据学习思路里的strom流式计算进行简单分解,了解一下在学习大数据中应该了解哪些流式计算的知识。

1、redis缓存系统大纲

学习内容:Redis的特点、安装如何使用命令客户端,redis的字符串类型、散列类型、列表类型、集合类型。redis的事务、管道、优化、持久化等等, redis的sentinel高可用,twemproxy,codis实战, redis3.x集群安装配置

2、Kafka

Kafka是当下流行的队列,可以说是从数据采集到大数据计算承上启下的重要环节,大家在此部分将会详细学习它的架构,kafka在大家大数据的项目中几乎都会涉及到。

学习内容:kafka是什么及体系结构、配置详解和安装,还有它的存储策略、分区特点,kafka与zookeeper的协调管理、java编程操作kafka,scala编程操作kafka,flume 和kafka 的整合, Kafka 和storm 的整合

3、Storm实时数据处理

将全面掌握Storm内部机制和原理,通过大量项目实战,让大家拥有完整项目开发思路和架构设计,掌握从数据采集到实时计算到数据存储再到前台展示

学习内容:如下截图

webp



作者:尚学先生
链接:https://www.jianshu.com/p/0363b505d4b5


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消