为了账号安全,请及时绑定邮箱和手机立即绑定

本地文件运行Hadoop案例(一)

标签:
大数据 Hadoop

一 Hadoop运行模式

(1)本地模式(默认模式):  不需要启用单独进程,直接可以运行, 测试和开发时使用。
(2)伪分布式模式:  等同于完全分布式,只有一个节点。
(3)完全分布式模式:多个节点一起运行。

下面是官网给出的原文:

This will display the usage documentation for the hadoop script.

Now you are ready to start your Hadoop cluster in one of the three supported modes:

 二 官网提供案例

1) grep

首先创建inputForGrep目录存放输入文件

https://img1.sycdn.imooc.com//5bd46c09000182a612490615.jpg

cp etc/hadoop/*.xml inputForGrep/  将hadoop下面的所有xml文件cp到输入文件下面用于处理

https://img1.sycdn.imooc.com//5bd46c4c00010b3e10580305.jpg

执行以下grep命令

https://img1.sycdn.imooc.com//5bd46e550001dcd218930075.jpg

查看运行结果

https://img1.sycdn.imooc.com//5bd46e860001d57f11950136.jpg

2) wordcount

创建wcinput

https://img1.sycdn.imooc.com//5bd46eeb00019e9818330027.jpg

创建wc.input

https://img1.sycdn.imooc.com//5bd46f130001800f10120723.jpg

执行wordcount命令

https://img1.sycdn.imooc.com//5bd46f760001fc1e19050076.jpg

查看运行结果:

https://img1.sycdn.imooc.com//5bd46f9c0001bb2c12050376.jpg

三 查看源码

通过反编译查看运行grep和wordcount的源码,如下:

package org.apache.hadoop.examples;

import java.io.PrintStream;
import java.util.Random;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.LongWritable.DecreasingComparator;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.map.InverseMapper;
import org.apache.hadoop.mapreduce.lib.map.RegexMapper;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.lib.reduce.LongSumReducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class Grep
  extends Configured
  implements Tool
{
  public int run(String[] args)
    throws Exception
  {
    if (args.length < 3)
    {
      System.out.println("Grep <inDir> <outDir> <regex> [<group>]");
      ToolRunner.printGenericCommandUsage(System.out);
      return 2;
    }
    Path tempDir = new Path("grep-temp-" + Integer.toString(new Random().nextInt(Integer.MAX_VALUE)));
    
    Configuration conf = getConf();
    conf.set(RegexMapper.PATTERN, args[2]);
    if (args.length == 4) {
      conf.set(RegexMapper.GROUP, args[3]);
    }
    Job grepJob = Job.getInstance(conf);
    try
    {
      grepJob.setJobName("grep-search");
      grepJob.setJarByClass(Grep.class);
      
      FileInputFormat.setInputPaths(grepJob, args[0]);
      
      grepJob.setMapperClass(RegexMapper.class);
      
      grepJob.setCombinerClass(LongSumReducer.class);
      grepJob.setReducerClass(LongSumReducer.class);
      
      FileOutputFormat.setOutputPath(grepJob, tempDir);
      grepJob.setOutputFormatClass(SequenceFileOutputFormat.class);
      grepJob.setOutputKeyClass(Text.class);
      grepJob.setOutputValueClass(LongWritable.class);
      
      grepJob.waitForCompletion(true);
      
      Job sortJob = Job.getInstance(conf);
      sortJob.setJobName("grep-sort");
      sortJob.setJarByClass(Grep.class);
      
      FileInputFormat.setInputPaths(sortJob, new Path[] { tempDir });
      sortJob.setInputFormatClass(SequenceFileInputFormat.class);
      
      sortJob.setMapperClass(InverseMapper.class);
      
      sortJob.setNumReduceTasks(1);
      FileOutputFormat.setOutputPath(sortJob, new Path(args[1]));
      sortJob.setSortComparatorClass(LongWritable.DecreasingComparator.class);
      
      sortJob.waitForCompletion(true);
    }
    finally
    {
      FileSystem.get(conf).delete(tempDir, true);
    }
    return 0;
  }
  
  public static void main(String[] args)
    throws Exception
  {
    int res = ToolRunner.run(new Configuration(), new Grep(), args);
    System.exit(res);
  }
}

package org.apache.hadoop.examples;

import java.io.IOException;
import java.io.PrintStream;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount
{
  public static class TokenizerMapper
    extends Mapper<Object, Text, Text, IntWritable>
  {
    private static final IntWritable one = new IntWritable(1);
    private Text word = new Text();
    
    public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
      throws IOException, InterruptedException
    {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens())
      {
        this.word.set(itr.nextToken());
        context.write(this.word, one);
      }
    }
  }
  
  public static class IntSumReducer
    extends Reducer<Text, IntWritable, Text, IntWritable>
  {
    private IntWritable result = new IntWritable();
    
    public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context)
      throws IOException, InterruptedException
    {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      this.result.set(sum);
      context.write(key, this.result);
    }
  }
  
  public static void main(String[] args)
    throws Exception
  {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length < 2)
    {
      System.err.println("Usage: wordcount <in> [<in>...] <out>");
      System.exit(2);
    }
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    for (int i = 0; i < otherArgs.length - 1; i++) {
      FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
    }
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[(otherArgs.length - 1)]));
    
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}






点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
JAVA开发工程师
手记
粉丝
7795
获赞与收藏
665

关注作者,订阅最新文章

阅读免费教程

  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消