为了账号安全,请及时绑定邮箱和手机立即绑定

奇异值分解(SVD)

标签:
设计模式

        PCA的实现一般有两种 :一种是用特征值分解去实现的,一种是用奇异值分解去实现的。特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。

一、特征分解

webp

        一个矩阵就相当于一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。

        分解得到的Σ矩阵是一个对角阵,里面的特征值是由大到小排列的,表示的是这个特征到底有多重要,这些特征值所对应的特征向量就是描述这个特征是什么(从主要的变化到次要的变化排列)。

二、奇异值分解

webp

webp

webp

SVD的性质:

webp

SVD计算举例:

webp



作者:owolf
链接:https://www.jianshu.com/p/4fdd0e8e272b


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消