为了账号安全,请及时绑定邮箱和手机立即绑定

一篇文章搞懂DataSet、DataFrame、RDD-《每日五分钟搞定大数据》

标签:
Spark

webp



1. 三者共性:

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利
2、三者都有惰性机制,执行trainform操作时不会立即执行,遇到Action才会执行
3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
4、三者都有partition的概念,如

var predata=data.repartition(24).mapPartitions{
      PartLine => {
        PartLine.map{
          line =>
             println(“转换操作”)
                            }
                         }
}

这样对每一个分区进行操作时,就跟在操作数组一样,不但数据量比较小,而且可以方便的将map中的运算结果拿出来,如果直接用map,map中对外面的操作是无效的,如

val rdd=spark.sparkContext.parallelize(Seq(("a", 1), ("b", 1), ("a", 1)))    var flag=0
    val test=rdd.map{line=>
      println("运行")
      flag+=1
      println(flag)
      line._1
    }
println(test.count)
println(flag)    /**
    运行
    1
    运行
    2
    运行
    3
    3
    0
   * */

不使用partition时,对map之外的操作无法对map之外的变量造成影响
5、三者有许多共同的函数,如filter,排序等
6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持

import SparkSession.implicits._

7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型,为了提高稳健性,最好后面有一个_通配操作,这里提供了DataFrame一个解析字段的方法
DataFrame:

testDF.map{      case Row(col1:String,col2:Int)=>
        println(col1);println(col2)
        col1      case _=>
        ""
    }

Dataset:

case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
    testDS.map{      case Coltest(col1:String,col2:Int)=>
        println(col1);println(col2)
        col1      case _=>        ""
    }

2. 对比:

2.1 RDD:

1、RDD一般和spark mlib同时使用
2、RDD不支持sparksql操作

2.2 DataFrame和Dataset相同点:

1、DataFrame与Dataset一般与spark ml同时使用
2、DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如

dataDF.createOrReplaceTempView("tmp")
spark.sql("select  ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)

3、DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然

//保存val saveoptions = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://172.xx.xx.xx:9000/test")
datawDF.write.format("com.databricks.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()//读取val options = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://172.xx.xx.xx:9000/test")
val datarDF= spark.read.options(options).format("com.databricks.spark.csv").load()

利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定

2.3 DataFrame和Dataset不同点:

这里主要对比Dataset和DataFrame,因为Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同
1)DataFrame也可以叫Dataset[Row],dataframe每一行的类型是Row(不解析的话无法得知每一行的字段名和对应的字段类型)
拿出dataframe行中特定字段的方法有两个:

getAS方法
testDF.foreach{
  line =>
    val col1=line.getAs[String]("col1")
    val col2=line.getAs[String]("col2")
}
模式匹配
testDF.map{      case Row(col1:String,col2:Int)=>
        println(col1);println(col2)
        col1      case _=>
        ""
    }

2) Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息(可以定义字段名和类型)

case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型/**
      rdd
      ("a", 1)
      ("b", 1)
      ("a", 1)
      * */val test: Dataset[Coltest]=rdd.map{line=>
      Coltest(line._1,line._2)
    }.toDS
test.map{
      line=>
        println(line.col1)
        println(line.col2)
    }

可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题

3. 转化:

RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换

DataFrame/Dataset转RDD:
val rdd1=testDF.rdd
val rdd2=testDS.rdd
RDD转DataFrame:
import spark.implicits._
val testDF = rdd.map {line=>
      (line._1,line._2)
    }.toDF("col1","col2")

一般用元组把一行的数据写在一起,然后在toDF中指定字段名

RDD转Dataset:
import spark.implicits._case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型val testDS = rdd.map {line=>
      Coltest(line._1,line._2)
    }.toDS

可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可

Dataset转DataFrame:

这个也很简单,因为只是把case class封装成Row

import spark.implicits._
val testDF = testDS.toDF
DataFrame转Dataset:
import spark.implicits._case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型val testDS = testDF.as[Coltest]

这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便



作者:大叔据
链接:https://www.jianshu.com/p/2614e895e86b


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消