为了账号安全,请及时绑定邮箱和手机立即绑定

给 Java 和 Android 构建一个简单的响应式Local Cache

一. 为何要创建这个库

首先,Local Cache 不是类似于 Redis、Couchbase、Memcached 这样的分布式 Cache。Local Cache 适用于在单机环境下,对访问频率高、更新次数少的数据进行存放。因此,Local Cache 不适合存放大量的数据。

Local Cache 特别适合于 App,也适合在 Java 的某些场景下使用。

我们的 App 使用 Retrofit 作为网络框架,并且大量使用 RxJava,因此我考虑创建一个 RxCache 来缓存一些必要的数据。

二. 如何构建 RxCache

2.1 RxCache 的基本方法

对于 Local Cache,最重要是需要有以下的这些方法:

<T> Record<T> get(String key, Type type);

<T> void save(String key, T value);

<T> void save(String key, T value, long expireTime);

boolean containsKey(String key);

Set<String> getAllKeys();

void remove(String key);

void clear();

其中,有一个 save() 方法包含了失效时间的参数expireTime,这对于 Local Cache 是比较重要的一个方法,超过这个时间,这个数据将会失效。

既然是 RxCache,对于获取数据肯定需要类似这样的方法:

<T> Observable<Record<T>> load2Observable(final String key, final Type type) ;

<T> Flowable<Record<T>> load2Flowable(final String key, final Type type);

<T> Single<Record<T>> load2Single(final String key, final Type type);

<T> Maybe<Record<T>> load2Maybe(final String key, final Type type);

也需要一些 Transformer 的方法,将 RxJava 的被观察者进行转换。在 RxCache 中,包含了一些默认的 Transformer 策略,特别是使用 Retrofit 和 RxJava 时,可以考虑结合这些策略来缓存数据。

以 CacheFirstStrategy 为例:

/**
 * 缓存优先的策略,缓存取不到时取接口的数据。
 * Created by tony on 2018/9/30.
 */
public class CacheFirstStrategy implements ObservableStrategy,
        FlowableStrategy,
        MaybeStrategy  {

    @Override
    public <T> Publisher<Record<T>> execute(RxCache rxCache, String key, Flowable<T> source, Type type) {

        Flowable<Record<T>> cache = rxCache.<T>load2Flowable(key, type);

        Flowable<Record<T>> remote = source
                .map(new Function<T, Record<T>>() {
                    @Override
                    public Record<T> apply(@NonNull T t) throws Exception {

                        rxCache.save(key, t);

                        return new Record<>(Source.CLOUD, key, t);
                    }
                });

        return cache.switchIfEmpty(remote);
    }

    @Override
    public <T> Maybe<Record<T>> execute(RxCache rxCache, String key, Maybe<T> source, Type type) {

        Maybe<Record<T>> cache = rxCache.<T>load2Maybe(key, type);

        Maybe<Record<T>> remote = source
                .map(new Function<T, Record<T>>() {
                    @Override
                    public Record<T> apply(@NonNull T t) throws Exception {

                        rxCache.save(key, t);

                        return new Record<>(Source.CLOUD, key, t);
                    }
                });

        return cache.switchIfEmpty(remote);
    }

    @Override
    public <T> Observable<Record<T>> execute(RxCache rxCache, String key, Observable<T> source, Type type) {

        Observable<Record<T>> cache = rxCache.<T>load2Observable(key, type);

        Observable<Record<T>> remote = source
                .map(new Function<T, Record<T>>() {
                    @Override
                    public Record<T> apply(@NonNull T t) throws Exception {

                        rxCache.save(key, t);

                        return new Record<>(Source.CLOUD, key, t);
                    }
                });

        return cache.switchIfEmpty(remote);
    }
}

2.2 Memory

RxCache 包含了两级缓存: Memory 和 Persistence 。

RxCache.png

Memory:

package com.safframework.rxcache.memory;

import com.safframework.rxcache.domain.Record;

import java.util.Set;

/**
 * Created by tony on 2018/9/29.
 */
public interface Memory {

    <T> Record<T> getIfPresent(String key);

    <T> void put(String key, T value);

    <T> void put(String key, T value, long expireTime);

    Set<String> keySet();

    boolean containsKey(String key);

    void evict(String key);

    void evictAll();
}

它的默认实现 DefaultMemoryImpl 使用 ConcurrentHashMap 来缓存数据。

在 extra 模块还有 Guava Cache、Caffeine 的实现。它们都是成熟的 Local Cache,如果不想使用 DefaultMemoryImpl ,完全可以使用 extra 模块成熟的替代方案。

2.3 Persistence

Persistence 的接口跟 Memory 很类似:

package com.safframework.rxcache.persistence;

import com.safframework.rxcache.domain.Record;

import java.lang.reflect.Type;
import java.util.List;

/**
 * Created by tony on 2018/9/28.
 */
public interface Persistence {

    <T> Record<T> retrieve(String key, Type type);

    <T> void save(String key, T value);

    <T> void save(String key, T value, long expireTime);

    List<String> allKeys();

    boolean containsKey(String key);

    void evict(String key);

    void evictAll();
}

由于,考虑到持久层可能包括 Disk、DB。于是单独抽象了一个 Disk 接口继承 Persistence。

在 Disk 的实现类 DiskImpl 中,它的构造方法注入了 Converter 接口:

public class DiskImpl implements Disk {

    private File cacheDirectory;
    private Converter converter;

    public DiskImpl(File cacheDirectory,Converter converter) {

        this.cacheDirectory = cacheDirectory;
        this.converter = converter;
    }

    ......
}

Converter 接口用于对象储存到文件的序列化和反序列化,目前支持 Gson 和 FastJSON。

Converter 的抽象实现类 AbstractConverter 的构造方法注入了 Encryptor 接口:

public abstract class AbstractConverter implements Converter {

    private Encryptor encryptor;

    public AbstractConverter() {
    }

    public AbstractConverter(Encryptor encryptor) {

        this.encryptor = encryptor;
    }

    ......
}

Encryptor 接口用于将存储到 Disk 上的数据进行加密和解密,目前 RxCache 支持 AES128 和 DES 两种加密方式。不使用 Encryptor 接口,则存储到 Disk 上的数据是明文,也就是一串json字符串。

三. 支持 Java

在 example 模块下,包括了一些常见 Java 使用的例子。

例如,最简单的使用:

import com.safframework.rxcache.RxCache;
import com.safframework.rxcache.domain.Record;
import domain.User;
import io.reactivex.Observable;
import io.reactivex.functions.Consumer;

/**
 * Created by tony on 2018/9/29.
 */
public class Test {

    public static void main(String[] args) {

        RxCache.config(new RxCache.Builder());

        RxCache rxCache = RxCache.getRxCache();

        User u = new User();
        u.name = "tony";
        u.password = "123456";
        rxCache.save("test",u);

        Observable<Record<User>> observable = rxCache.load2Observable("test", User.class);

        observable.subscribe(new Consumer<Record<User>>() {

            @Override
            public void accept(Record<User> record) throws Exception {

                User user = record.getData();
                System.out.println(user.name);
                System.out.println(user.password);
            }
        });
    }
}

带 ExpireTime 的缓存测试:

import com.safframework.rxcache.RxCache;
import com.safframework.rxcache.domain.Record;
import domain.User;

/**
 * Created by tony on 2018/10/5.
 */
public class TestWithExpireTime {

    public static void main(String[] args) {

        RxCache.config(new RxCache.Builder());

        RxCache rxCache = RxCache.getRxCache();

        User u = new User();
        u.name = "tony";
        u.password = "123456";
        rxCache.save("test",u,2000);

        try {
            Thread.sleep(2500);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        Record<User> record = rxCache.get("test", User.class);

        if (record==null) {
            System.out.println("record is null");
        }
    }
}

跟 Spring 整合并且 Memory 的实现使用 GuavaCacheImpl:

import com.safframework.rxcache.RxCache;
import com.safframework.rxcache.extra.memory.GuavaCacheImpl;
import com.safframework.rxcache.memory.Memory;
import org.springframework.beans.factory.annotation.Configurable;
import org.springframework.context.annotation.Bean;

/**
 * Created by tony on 2018/10/5.
 */
@Configurable
public class ConfigWithGuava {

    @Bean
    public Memory guavaCache(){
        return new GuavaCacheImpl(100);
    }

    @Bean
    public RxCache.Builder rxCacheBuilder(){
        return new RxCache.Builder().memory(guavaCache());
    }

    @Bean
    public RxCache rxCache() {

        RxCache.config(rxCacheBuilder());

        return RxCache.getRxCache();
    }
}

测试一下刚才的整合:

import com.safframework.rxcache.RxCache;
import com.safframework.rxcache.domain.Record;
import domain.User;
import io.reactivex.Observable;
import io.reactivex.functions.Consumer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

/**
 * Created by tony on 2018/10/5.
 */
public class TestWithGuava {

    public static void main(String[] args) {

        ApplicationContext ctx = new AnnotationConfigApplicationContext(ConfigWithGuava.class);

        RxCache rxCache = ctx.getBean(RxCache.class);

        User u = new User();
        u.name = "tony";
        u.password = "123456";
        rxCache.save("test",u);

        Observable<Record<User>> observable = rxCache.load2Observable("test", User.class);

        observable.subscribe(new Consumer<Record<User>>() {
            @Override
            public void accept(Record<User> record) throws Exception {

                User user = record.getData();
                System.out.println(user.name);
                System.out.println(user.password);
            }
        });
    }
}

四. 支持 Android

为了更好地支持 Android,我还单独创建了一个项目 RxCache4a: https://github.com/fengzhizi715/RxCache4a

它包含了一个基于 LruCache 的 Memory 实现,以及一个基于 MMKV(腾讯开源的key
-value存储框架) 的 Persistence 实现。

我们目前 App 采用了如下的 MVVM 架构来传输数据:
MVVM.png

未来,希望能够通过 RxCache 来整合 Repository 这一层。

五. 总结

目前,RxCache 完成了大体的框架,初步可用,接下来打算增加一些 Annotation,方便其使用。

点击查看更多内容
1人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
全栈工程师
手记
粉丝
1.7万
获赞与收藏
594

关注作者,订阅最新文章

阅读免费教程

感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消